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Abstract

 The fundamental problem with 
liposomal drug delivery systems is stability.The 
construction of a liposomal drug delivery system 
allows the precise distribution of medications to 
various bodily regions. It is advantageous for this 
delivery technique to transport both hydrophilic 
and hydrophobic medicinal molecules. Many 
liposomal drug delivery systems are approved 
by the regulatory authorities (Foodanddrug 
administrations and European medicine agency) 
and developed by various manufacturing 
industries. Despite of various advantages shown 
by liposomes for the potent delivery of drugs, 
they have a major issue of both physical and 
chemical stability. To avoid stability problems 
manufacturing scientists have developed some 
of modified liposomal formulations over the 
years. Proliposomes is one of the transformed 
liposomes which is a dried,free-flowing 
liposomal prodrug when it comes in contact 
with water forms a liposomal suspension. The 
other modified liposomes include pH-sensitive 
liposomes, immunoliposomes, surface-modified 
liposomes, and elastic liposomes. The pH-
sensitive liposomes are uniquelycreated for 
delivering the drug into the change in pH. They 
can be delivered inside the cytoplasm via the 
endocytic pathway. The surface modification of 
the liposomes is done by using several polymers 
like polyethylene glycols for enhancing stability. 

Surface modification can influence blood 
circulation and eliminate drug interaction risk. 
The surface-modified liposomes are mainly 
designed for targeted drug delivery in cancer 
patients and tumor cells. Another type of stable 
liposome is the Elastic liposome, which is 
designed for topical liposomal drug delivery. In 
vitro skin delivery of drugs can be possible by 
the use of elastic liposomes. The last one is the 
immunoliposomes. These are mainly prepared 
by attaching antibodies to the liposomal surfaces 
for targeting the tumor-specific receptor. Using 
thioether linkages the immunoliposomes are 
prepared.The study contains various data on 
methods of preparations, characterization, and 
applications of the above-mentioned stability-
enhancing liposomes. The objective of this 
study is to give a summary of the various 
stability-enhancing liposomes that have been 
developed over time.

Keywords: Stability, Proliposomes, Ph 
sensitive liposomes, Surface modification, 
Elastic liposomes, immunoliposomes

Introduction

 Drugs and bioactive substances 
offer immense potential for treating illnesses, 
reducing pain, preventing illness, or sustaining 
health. At the site of action, the drug 
bioavailability and absorption vary, however, 
makes the administration of medications by 
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oral, topical, parenteral, rectal, and nasal 
routes problematic (1). Currently, a variety 
of drug delivery methods have been created 
through encapsulating medications or bioactive 
substances in a variety of vehicles, such as 
liposomes (2), nanoemulsions (3), and nano-
structured lipid carriers(4).The goals are to 
improve the quality of the systems themselves, 
increase drug bioavailability, and control the 
rate at which the medication is released into the 
target organ. Due to their capacity to deliver both 
hydrophilic and hydrophobic membranes to the 
membranes, long-circulating macromolecular 
carriers known as liposomes have emerged 
as the most intriguing of these carriers. The 
main obstacles to their development are their 
low physical and biological stability, which can 
be seen in processes including aggregation, 
sedimentation, fusion, phospholipid hydrolysis, 
and oxidation. There have been numerous 
attempts over time to increase the stability of 
liposomes. The stability issue of liposomal drug 
delivery systems was somewhat mitigated by 
the development of proliposomes, Ph-sensitive 
liposomes, elastic liposomes, surface-modified 
liposomes, and immunoliposomes (5–10).

Proliposomes

         With various advantages over traditional 
liposomes, proliposomes are a new form of 
the carrier-mediateddelivery mechanism. 
Proliposomes have much more suitability for 
administrating medications since their stability 
significantly outweighs that of liposomes (11). 
When they encounter water inside the system, 
they transform right away into liposomal 
dispersion. Liposomes are created when 
proliposomes (PLs), which are merely soluble 
particles covered in liposome precursors, are 
dissolved in water. Liposomes are created when 
proliposomes (PLs), which are merely soluble 
particles are dissolved in water (12). 

 In general, aqueous suspensions of 
liposomes are susceptible to several negative 
consequences, which reduce their shelf 
life. These include aggregation, fusion, and 

phospholipid hydrolysis. It would be helpful to 
have a method for manufacturing liposomes 
fast, on-demand, and with minimal intervention, 
because the life span of liposomes can be 
constrained. The “proliposome” approach meets 
these needs (13). When proliposomes (PLs) 
are hydrated, they form liposomes because 
of the liposomal membrane that covers them. 
Payne et al. initially established the idea of 
proliposomes in 1986 (12). The bioavailability 
of proliposomes is improved. safeguarding 
pharmaceuticals against GIT deterioration. By 
changing the phospholipid content of bi-layers, 
proliposomes can be employed to regulate 
release within the vasculature. Targeted drug 
delivery and controlled drug release are made 
possible by proliposomes (14).

 Various formulation components can 
be used to produce proliposomes. These 
may consist of phospholipids, cholesterol, 
some water-soluble carriers, such as sorbitol, 
mannitol, and others, as well as solvents, such 
as ethanol, ether, or chloroform (15). There 
are numerous ways to make proliposomes 
including the film deposition carrier method, 
spray drying method, supercritical anti-solvent 
method, and fluidized bed method. The most 
effective technique for producing proliposomes 
is film deposition on carriers. The proliposomes 
are made in this manner using a rotating flash 
evaporator operating under a vacuum(16). 

PH-sensitive liposomes

 Liposomes, which have been used 
frequently as medication carriers, serve as both 
a delivery route for encapsulated substances 
to enter cells and a controlled release system. 
Most liposomes that cells internalize do so via a 
pathwaythat is endocytic and then transported 
to the lysosome, where lipids and their 
contentsbreak down enzymatically(17). When 
given by the majority of liposome compositions 
described so far, substances that are broken 
down in or unable to leave the lysosomal 
compartment would remain inactive. The goal 
of delivering the liposomes intracellularly is 
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lost if lysosomotropic transport of the contents 
after internalization destroys the medications 
enclosed therein. 

 There have been several methods 
used to enhance the cytoplasmic dispersion 
of medicines delivered by liposomes and 
prevent lysosomal delivery. Subcellular site-
specific delivery would benefit significantly 
from specially formulated liposomes that would 
mediate cytoplasmic delivery. When the pH of 
the surrounding serum changes, pH-sensitive 
liposomes are precisely engineered to release 
the medications they are filled with. As a 
result, they can successfully carry medication 
or gene fragments into the cytoplasm through 
the endocytotic pathway. N-palmitoyl-L-
homocysteine (PHC), an acylated amino acid, 
was employed as the acid-sensitive component 
in the first report of pH-sensitive liposomes, along 
with di-heptadecanoyl phosphatidylcholine 
(DHPC) and dipalmitoylphosphatidylcholine to 
create the liposomes which are pH-sensitive. 
Thesewere made to become unstable in the 
low pH environment around tumors, infections, 
and inflammation, releasing any drugs that were 
imprisoned there (18).

 There are primarily four categories of 
pH-sensitive liposomes. The first class includes 
slightly acidic amphiphiles that serve as 
stabilizers at normalpH with polymorphic lipids 
like unsaturated phosphatidylethanolamines. 
Liposomes from the second class have higher 
permeability to encapsulated solutes because 
they are made of lipid derivatives. Using pH-
sensitive peptides or reconstituted fusion 
proteins, the third class of liposomes destabilizes 
thelow-pH membranes. The last and recent 
class of pH-sensitive liposomes uses pH-
titratable polymers for destabilizing membranes 
once the conformation of the polymer changes 
at low pH(19).

 The water contents of pH-sensitive 
liposomes are released when the system 
becomes acidic because they are stable at 
physiological pH (7.4) but become unstable 

and develop fusogenic qualities when the 
pH is low. As a result, these liposomes have 
the potential to increase medication delivery 
effectiveness by extending the period that 
blood circulates (20).Fluorescent markers with 
different molecular sizes, enzymes, ribozymes, 
cytotoxic chemicals,DNA,RNA,and proteins can 
all be delivered to cells much more effectively 
and efficiently using pH-sensitive liposomes 
as compared to other delivery methods. The 
disadvantages of these preparations have 
prevented any of them from being employed in 
clinical settings thus far.Thus a therapeutically 
viable pH-sensitive liposomal formulation needs 
several crucial components, such as effective 
pH-triggered release, stability of serum, and 
sufficient circulation time in vivo. Therapeutic 
medicines or macromolecules with intracellular 
targets would have been well-suited to pH-
sensitive liposomes as a carrier. Additionally, 
creating “wise” multifunctional pharmacological 
nano-carriers by fusing pH-sensitive liposomes 
with active targeting and other mechanisms 
may be used in a variety of medical therapies 
shortly for improved performance(21).

Surface modified liposomes 

         Drugs can be delivered via nanoparticles 
and nanocarriers with greater effectiveness and 
less potential harm. The physical and chemical 
properties of liposomes, such as their size, 
surface charge, and lipid organization, can be 
changed to change how effective they are. The 
majority of current nanocarrier research focuses 
on surface modifications thatimprove the 
efficiency of medicine targeting.Liposomes can 
be further fine-tuned as nanocarriers by surface 
alterations and functionalization with moieties 
that change the range of stimuli perceived. 
Different surface modifications offer various 
advantages(22). The advantages of various 
surface changes vary. The reticuloendothelial 
system (RES), which typically presents a 
substantial challenge in intravenous delivery, 
might be avoided by modifying liposomes with 
polyethylene glycol (PEG), which may improve 
blood circulation and eliminate nonspecific 
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interactions(23). By offering means to get 
past the present physiological and biological 
limitations, liposome surface alterations and 
functionalization can significantly enhance solid 
tumors and cancer(24).

         The shortened half-life of the liposomes is 
caused by the reticuloendothelial system (RES), 
which is known to be an important defense 
mechanism of the body.Opsonin a serum 
protein detects the liposome as a toxic entity 
that absorbs the liposome. A liposome that has 
been opsonized is destroyed by phagocytes 
in the RES. Liposomes’ propensity to leak 
their contents throughout circulation presents 
another problem. To lengthen a liposome’s 
circulation time, the surface of the liposome 
can be changed with the help of hydrophilic 
polymers, such as polyethyleneglycol (PEG)
(25). PEGylated liposomes which are also 
known as stealth liposomes are the names 
given to these liposomes.The term “stealth” 
liposome refers to a liposome that has had its 
surface PEGylated, which makes it more stable 
and evasive.

 PEGylated liposomes have several 
benefits. These redesigned nanocarriers have 
a longer systemic circulation duration and a 
reduced rate of phagocyte absorption in the 
RES. Because of the enhanced permeability 
and retention (EPR) effect and higher 
concentration in the tumor tissue, stealth 
liposomes are more accessible than non-
PEGylated liposomes and are more effective at 
eliminating malignancies(26). The development 
of site-specific liposomes was made possible by 
the discovery of stealth liposomes. By joining 
additional moieties, such as antibodies and 
peptides, to the free ends of PEG polymers, 
the liposomes can participate in more precise 
targeting(27). Increased penetration through 
mucus is another benefit of PEGylation. 
The human body is shielded by mucus from 
several outside invaders, such as bacteria 
and viruses(28). A few polymers can cling to 
mucosal membrane surfaces, increasing the 
bioavailability. This is especially important when 

it comes to drug administration to the airways, 
as solving the problem of effective delivery of 
drugsthrough mucus in the airways may pave 
way for brand-new therapies to treat critical 
diseases like cystic fibrosis(29).

There are a few limitations to the PEG surface-
modified liposomes. The surface affinity and 
nanoparticle composition must be taken into 
account when incorporating a specific ligand 
onto a nanoparticle’s surface(30). Even 
while PEG liposomes have longer circulation 
durations, their enhanced stealth abilities are 
limited.The PEGylation effect on in vivo stability 
is constrained since the stealthiness of these 
coatings declines and these surface-modified 
liposomes are finally identified and eliminated 
by the mononuclear phagocyte system(31).

Elastic liposomes

  Pharmaceutical and cosmetic 
businesses now confront significant obstacles.
Cosmetic formulations willnot only support 
claims that they will change the skin’s 
appearance, but also that they will shield it from 
the harshness of the environment, slow down 
the aging process, and significantly improve 
skin nourishment. Modern cosmetics need to 
show practicality and physiological benefits to 
satisfy these requirements. Due to their inherent 
benefits over other vesicular carriers, elastic 
liposomes have received the most attention 
irrespective of the various carriers studied for 
the delivery of pharmaceuticals topically over 
the past several years. Elastic liposomes, also 
called transferosomes, are double-layered 
vesicular systems that are compatible with 
biology(32).

         According to claims, undamaged elastic 
liposomes can pass through the skin’s layers 
and into the bloodstream, improving in vitro 
skin delivery. Gregor Cevc (Idea, Munich) 
originally identified elastic liposomes and gave 
them the name Transfersomes®. Amphiphilic 
phospholipids with a variety of chemical 
configurations, edge activators (such as 
sodium cholate, sodium deoxycholate, span, 
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and dipotassium glycyrrhizinate), and watery 
parts are the main constituents of elastic 
liposomesEdge activator decreases the lipid’s 
transition temperature and disrupts the elastic 
liposomes’double lipid layer, increasing their 
fluidity and improving how they permeate the 
skin.The most popular phospholipids are egg 
phosphatidylcholine (10% w/w) and unsaturated 
soya phosphatidylcholine (PC)(8,33–35).

 For the effective treatment of numerous 
diseases, researchers have extensively studied 
elastic liposomes for drug delivery and other 
therapeutic agents.When results from traditional 
creams were compared to those from cetrizine-
loaded elastic liposomes, a significant reduction 
in itching has observed(36).Cyclodextrin-
colchicine complex elastic liposomes showed 
superior anti-gout activity compared to other 
drug solutions(37). When compared to oral 
delivery, rifampicin-loaded elastic liposomes 
demonstrated superior pharmacokinetic 
characteristics(38).Different surfactants were 
used to load elastic liposomes with 5-fluorouracil 
(5-FU) to improve medication penetration 
through the rat skin’s stratum corneum (SC) 
layer(39).isoniazid-loaded ELs employing a 
surfactant with built-in anti-tubercular action 
and phosphatidylcholine (PC)(40).Using 
Taguchi’s orthogonal experimental design, the 
timolol-loaded transferosome formulation was 
assessed for its effectiveness in treating open-
angle glaucoma(41).A local anesthetic-loaded 
transferosome formulation for the relief of 
dental and buccal discomfort. The formulation 
was created to reduce the frequency of 
administration and improve the safety of the 
local anesthetic that was provided by delivering 
a local effect(39).

Immunoliposomes

The fate of liposomes is greatly shaped by their 
diameter, with nano-sized liposomes gaining in 
pathological areas as a result of the enhanced 
permeability and retention effect (EPR), which 
is based on the fact that the vasculature in 
pathological areas is “leaky,” as opposed to 

normal tissue(42).The following delivery through 
the reticuloendothelial system macrophages, 
phospholipids, and cholesterol compounds are 
quickly cleared from the circulation (RES)(43).A 
potential strategy to enhance the therapeutic 
impact of pharmacological medications in the 
target tissue has been developed: delivering 
customized liposomes with ligands attached to 
their surface that detect cell surface antigens or 
receptors in target tissues. (44,45).Any biological 
unit that can bind to a target can be employed; 
to this end, liposomes have been linked with 
various biological units such as vitamins, 
glycoproteins, peptides, oligonucleotides, 
oligosaccharides, antibodies, or antibody 
fragments. Liposomes having antibodies bound 
to its surfaces as targeting ligands are known as 
immunoliposomes because of their remarkable 
specificity(46–49).

 It is possible to add ligands or antibodies 
to liposomes both during and after production. 
To attach antibodies and antibody fragments, 
the binding must occur either covalently or 
noncovalently. Recently, numerous chemical 
techniques for this attachment have been 
studied(50).A hydrophobic anchor group 
with a functional group secures the ligand 
to the liposomes’ surface(51).To develop 
new drugs, it is necessary to consider how 
the kind and location of attachment may 
impact pharmacokinetics(52,53).To bind the 
ligands to the liposomal surfaces thioether 
linkages are frequently used, such as when 
thiols and maleimide groups react(54).Many 
proteins include the sulfhydryl group, but 
frequently there are few or no -SH groups 
present, therefore they must be produced from 
disulfide bonds already present or by adding 
a heterobifunctional crosslinking agent(50).
Alternatively, antibodies may be linked to 
sterically stabilized long-circulation liposomal 
membranes at the distal end of the polyethylene 
glycol chain or in parallel with it(55,56).The 
utilization of recombinant antibody-binding 
proteins generated from streptococcal protein 
G by site-directed mutagenesis is a recent 
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breakthrough.By simply mixing with lipids, this 
lipoprotein can be integrated into liposomes 
and act as an antibody-binding site to produce 
useful immunoliposomes (57).

 Gene delivery is carried out using 
numerous delivery vehicles, which include 
liposomes, and is a very promising approach 
to the treatment of cancer(58,59).When it 
comes to gene delivery, lipoplexes—complexes 
made of cationic liposomes and DNAoffer 
numerous benefits over other systems. Most 
importantly, lipoplex complexes have insufficient 
immunogenicity and don’t have the potential to 
develop into new types of infectious viruses 
because they aren’t contagious(59)(60).The 
creation of liposome-DNA complexes combined 
with anti-Transferrin receptor antibody 
fragments is one example of such a method 
(Single Chain viable fragment)(59).Comparing 
the single-chain viable fragment-cysteine 
immunolipoplexes to nonmodified complexes or 
those connected exclusively with single-chain 
antibody fragments, they greatly improved 
the binding to tumor cells (single-chain viable 
fragment)(61).As a non-invasive, non-viral trans-
vascular brain gene delivery technique, Trojan 
horse immunoliposomes (THL) offer a potential 
novel belief and have been used for plasmid 
DNA encapsulation(62). The components of 
Trojan horse immunoliposomes includenon-
viral gene expression plasmids, pegylated 
immunoliposomes enclosed in carriers, 
and endogenous peptide or peptidomimetic 
monoclonal antibodies that function as Molecular 
Trojan horses (MTHs) and travel through the 
BBB through receptor-mediated transport(63).

 The majority of immunoliposome 
research is based on various cancer treatments. 
Most immunoliposome research on breast 
cancer focuses on the ERBB2-encoded 
human epidermal growth factor receptor 2. 
HER2 is the more popular name for this, and 
it is amplified in 18–20% of breast cancers(64). 
HER2 overexpression has been observed 
in various additional cancer types, including 
those of the brain, lungs, prostate, bladder, and 

gastrointestinal system (65–67).High levels 
of HER2 is seen in cancer cells of the breasts 
(BT-474 and SK-BR-3) and low levels of HER2 
(MDA-MB-231), respectively, were treated 
with a method involving an immunoliposomes 
coupled withencapsulated paclitaxel and anti-
HER2 antibody trastuzumab (Herceptin®) 
(68,69).The second most common cause of 
cancer-related deaths, behind lung and breast 
cancer, is colon cancer. The only form of 
treatment that effectively removes initial tumors 
is surgery (70). Recombinant humanized anti-
TAG-72 monoclonal antibody (HuCC49) Fab 
fragments were conjugated to liposomes which 
are sterically stabilized containing plasmid 
DNA as one illustration of an immunoliposome 
in cancer therapy of colon (pDNA) (71).When 
used to attach to TAG-72 overexpressed 
LS174T human colon cancer cells, this 
Immunoliposome outperformed conventional 
liposomes. Leukemia is a disease for which 
chemotherapy is the main form of treatment, 
but immunoliposomes have also been found 
to be helpful. However, in recent times, the 
treatment of leukemia has made significant 
strides. Clinically authorized antibodies, such 
as alemtuzumab and ritiximab, have shown 
encouraging results (72,73).

Characterization

 The characterization of liposomes 
depends on a number of factors. A key 
feature is their particle size. Scanning electron 
microscopy can be used to analyze the size 
distribution and surface appearance of particles 
(74). Zeta potential is a further property that is 
quite intriguing. It serves as a measure of article 
charge; the more surface charge there is, the 
higher the zeta potential absolute value (75).
By forming liposome dispersion, separating 
the drug that hasn’t been entrapped, and 
calculating the amount of drug entrapped, the 
efficiency of drug entrapment is carried out 
(76). When a drug is formulated it transforms 
from crystalline to amorphous, and this can be 
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substance is deposited on a dialysis membrane 
that is kept in the diffusion cell’s donor and 
receiver compartments(78).

detected by differential scanning calorimetry 
(DSC) and powder X-ray diffractometry (PXRD)
(77). A Franz diffusion cell is used to conduct 
an in vitro drug release assessment test. The 
Liposomal Drugs approved by Regulatory authorities:-

Brand Name Year 
Of Au-
thoriza-

tion

Active 
Constituents

  Therapeutic 
     Indication

Adverse Drug Reaction

   
R

ef
er

en
ce

s

ARIKAYCE®
2020     Amikacin

pulmonary infections brought 
on by Mycobacterium avium 
Complex that are non-tuber-
culous mycobacterial (NTM).

Severe renal
Impairment (79)

AVASTIN® 2005   Bevacizumab
Epidermal Growth Factor 

Receptor (EGFR) activating 
mutations in metastatic carci-
noma of the colon or rectum, 

metastatic breast cancer, 
or metastatic or recurrent 

non-squamous non-small cell 
lung cancer.

Pregnancy, recombinant 
human or humanized anti-
bodies, or hypersensitivity 
to Chinese Hamster Ovary 

(CHO) cell products

(80)

VELCADE® 2004 Bortezomib
Multiple myeloma, Mantle cell 

lymphoma.
Acute diffuse infiltrative 

pulmonary and pericardial 
disease

(81)

EXPAREL® 2020 Bupivacaine
somatic post-operative pain 

from
small- to medium-sized 

surgical wounds in adults.

Obstetrical paracervical 
block anesthesia due to 
risk of foetal bradycardia 

or death, Renal 
Impairment, Hepatic 

Impairment

(82)

MYOCET® 2000 Combination 
of Doxorubicin and 
Cyclophosphamide

Metastatic Breast Cancer
Neutropenic fever, 

neutropenia, 
thrombocytopenia

(83)

VYXEOSTM
2018 Combination of 

Daunorubicin and 
cytarabine.

Therapy-related
acute myeloid leukemia.

(t-AML)

Genotoxicity, 
carcinogenicity, and 

reproductive and 
developmental toxicity

(84)

YONDELIS® 2007 Trabectedin Soft tissue
Sarcoma, Relapsed platinum-

sensitive ovarian cancer.

Hepatic Impairment, Renal 
Impairment,

Thrombocytopenia,
Neutropenia

(85)

ONIVYDE®
2016 Irinotecan Metastatic adenocarcinoma 

of the pancreas.

Hepatic and Renal toxicity, 
Leukopenia, Neutropenic 

Fever

(86)

COMIRNATY®
2020

Tozinameran
(mRNA)

Injection for active 
immunization to prevent 

COVID-19 caused by SARS-
CoV-2.

Hypersensitivity and 
anaphylaxis, Myocarditis 

and pericarditis

(87)

DOXIL® 1995 Doxorubicin hydro-
chloride (HCl)

Ovarian Cancer,
AIDS-Related Kaposi’s 

Sarcoma,
Multiple Myeloma.

Hand-Foot Syndrome 
(HFS),

Stomatitis,
Neutropenia or 

Thrombocytopenia

(88)

ONPATTROTM 2018 Patisiran(siRNA)
Hereditary Transthyretin 

amyloidosis.
Upper respiratory tract 

infections
and infusion-related 

reactions.

(89)
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Conclusion 

The advantages of employing liposomes 
as a drug delivery technology include their 
biocompatibility, capacity to transport large 
drug payloads, ability to self-assemble, and 
a variety of physicochemical and physical 
properties that can be changed to influence 
their biological aspects. But liposomes have 
several stability issues. So some modified 
liposomes are prepared like proliposomes, pH-
sensitive liposomes, Elastic liposomes, etc.
Proliposomes represent a significant advance 
in the treatment of the bioavailability,stability 
and solubility of poorly soluble pharmaceutical 
problems correlated with liposomes. 
Additionally, they offer a non-invasive way 
to distribute drugs through or into the skin. 
The effectiveness of cytoplasmic transport 
of different fluorescent markers with different 
molecular sizes, ribozymes, proteins,enzymes, 
cytotoxic agents, RNA, and DNA to cells can be 
greatly increased using pH-sensitive liposomes. 
Elastic liposomes have been used to enhance 
not just the physicochemical characteristics 
of the medications they contain, but also 
the pharmacokinetic and pharmacodynamic 
characteristics of such pharmaceuticals in both 
animal and human studies. Immunoliposome 
development has led to applications for diagnosis 
and therapy in a variety of medical fields. More 
research on these stabilized liposomes can 
lead us to the treatment of various untreated 
diseases like Cancer.
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