Computational Discovery of Drug Targets and Potential Phytochemical Inhibitors for *Porphyromonas gingivalis*

Mohita Karmi ¹, Raghunath Satpathy^{2*}

¹Department of Life Science, National Institute of Technology, Rourkela, Odisha, India-769008 ²School of Biotechnology, Gangadhar Meher University, Amruta Vihar, Sambalpur, Odisha, India-768004

* Corresponding author: rnsatpathy@gmail.com

Abstract

The current work attempts to discover some new drug targets in the case of Porphyromonas gingivalis ATCC 33277 using computational methods. The 245 numbers of selected essential genes in the case of bacteria P. gingivalis ATCC 33277 were obtained by searching the total no. of 463 genes available in the Database of Essential Genes (DEG) database by using Basic Local Alignment Search Tool (BLAST) tool against the Human (Homo sapiens) genome. Screening of the target molecule was performed based on (expectation) E-value, similarity score, and query coverage. Further, the gene interaction network was constructed by the STRING database, and potential hub genes were identified by the Cytohubba module of the Cytoscape tool. rpIR gene encoding large ribosomal subunit protein was chosen as the target. Further receptor-based screening of traditional Chinese medicinal compounds using docking, toxicity, and molecular dynamics simulations identified Mulberroside C as a potential inhibitor. Since it is a computational work further experiment is necessary to validate the prediction.

Keywords: Porphyromonas gingivalis, essential genes, BLAST score, drug target, compound screening, docking, Molecular dynamics simulation

Introduction

Porphyromonas gingivalis Gram-negative, obligate anaerobic bacterium that resides in the oral cavity and is the primary causative agent of chronic inflammatory periodontitis. This infection affects 10-15% of adults throughout the world and can lead to significant health complications and mortality in severe cases. The existence of drug-resistant forms of Porphyromonas is currently a major challenge for the discovery of novel effective drugs. Periodontal disease refers to a group of inflammatory conditions in the oral cavity, triggered by pathogenic microorganisms that create a complex biofilm on tooth surfaces, leading to the destruction of the supporting structures of the teeth. The severity of this illness varies from moderate gingival inflammation (gingivitis) to chronic breakdown of connective tissues, the creation of a periodontal pocket, and loss of teeth (1-2). Periodontal diseases are commonly found in most of the human populations across the world and they result in a significant and a major, gradual health concern. According to a report from the World Health Organization (WHO), 10-15% of the adult populations worldwide (~538 million) are affected by periodontal disease (3-4-5). According to recent epidemiological data periodontal disease is most prevalent in the adult population specifically over 30 years of age and causes tooth loss among adults (6). Many recent clinical, experimental,

Computational discovery of drug targets and potential phytochemical inhibitors for *Porphyromonas gingivalis*

and epidemiological studies and evidence in the literature suggest the significant impact of the pathogen Porphyromonas either directly or indirectly on overall human health. For example, establishing the relationship between periodontal diseases and inflammation and the progression of other systemic diseases is an interesting aspect for researchers to conduct multidisciplinary research. Several studies have shown that the disease periodontitis is associated with various non-oral and potentially deadly systemic diseases, including cardiovascular diseases, cancer, diabetes type II, respiratory tract infection, AIDS, Down's syndrome, musculoskeletal, neurodegenerative diseases e.g., Alzheimer disease (AD) and so on (7-8-9-10-11). Also, a gene expression study explored the molecular link between periodontitis and rheumatoid arthritis (RA) to identify shared therapeutic targets. Differentially expressed genes (DEGs) from both conditions were analyzed, and the key interconnecting gene involved periodontitis and RA (12).

Antibiotic treatments somehow show a few side effects and some adverse conditions. So, with the identification of potential targets and a target-based approach in the drug design, we can target the particular metabolic pathway or some of the specific target proteins that is critical to the growth, metabolism, survival, and pathogenesis of the bacteria. In this review, some of the actions of drugs and antibiotics along with different methods used to identify potential drug targets with therapeutic effects were discussed in brief (13-14). So as an alternative therapeutic molecule, several phytochemicals are currently being studied to explore their potential inhibitor nature against P. gingivalis. Schmuch et al. investigated the anti-adhesive effects of a proanthocyanidin-enriched extract from Rumex acetosa on Porphyromonas gingivalis that contains compounds such as flavan-3-ols, oligomeric proanthocyanidins, and flavonoids (15). A study by Bezerra, J. J. L., & da Silva suggested the non-toxic natural products obtained from Punica granatum can be considered as an alternative to the recommended commercial products used for the treatment of gingivitis (16). Peeran et al. investigated the antibacterial and anti-inflammatory potential of *Momordica charantia* extracts. Phytochemical analysis revealed significant levels of alkaloids, flavonoids, phenols, and tannins exhibited inhibitory nature against *Porphyromonas gingivalis* (17).

The objective of the work is to use computational methods to predict a suitable drug target for *Porphyromonas gingivalis* and screen suitable phytochemical inhibitors against the predicted target.

Materials and Methods

Retrieval of essential genes of Porphyromonas gingivalis ATCC 33277

The essential genes of the pathogen Porphyromonas gingivalis ATCC 33277 were searched and retrieved from the Database of Essential Genes (DEG) (http://tubic.tju.edu.cn/deg/) (accessed on 24.10.2023) (18). DEG is user friendly freely accessible database, contains the record for all the available essential genes. Along with nucleotide and protein sequence information each entry also contains a unique DEG identification number with function details.

Searching of human non-homologous retrieved essential genes

To study and investigate the non-homologous essential genes of the bacteria *P. gingivalis* ATCC 33277, the Basic Local Alignment Search Tool (BLAST) program was used. Among these Position Specific Iterated BLAST (PSI-BLAST) was chosen to accurately investigate the essential genes of *P. gingivalis* ATCC 33277, which are non-homologous to the human.

Protein-protein interaction study and prediction of hub genes

The functional protein association networks of the non -homologous genes were obtained using the STRING (Search Tool for the

Retrieval of Interacting Genes) database available at https://string-db.org/. Subsequently, the hub genes were identified by using the plug-in CytoHubba (https://apps.cytoscape.org/apps/cytohubba) in the Cytoscape version 3.10.3 tool. From the Cytohubba application, identification of the best 6 hub genes occurs by using the maximal clique centrality (MCC) method.

Selection of the receptor proteins and screening of phytochemicals from the traditional Chinese medicine library database

The interacting proteins were analyzed and the best one was selected as the receptor molecule from the hub-gene network. Since the experimental 3D structures were not available, hence the Alpha fold predicted structure was considered for further study (https://alphafold.ebi.ac.uk/search/text/AF-B2RLX6-F1). The structure was validated by plotting the Ramachandran plot with the PROCHECK program and computing quality by ERRAT by using the SAVES server (https://saves.mbi.ucla.edu/). Further, the receptor molecule was used in the DrugReP server for screening of potential phytochemicals from the traditional Chinese medicine library (http://cao.labshare.cn/drugrep/). Drug rep is a server that facilitates both receptor-based or ligand-based screening over drug libraries for a given molecule. The screening results were obtained in the ranked form according to the docking scores (19).

Selection of potential phytochemicals and MD simulation

Screening of the resulting molecules from the DrugReP was performed by using Lipinski's rule of five (20), ligand interaction analysis by the Biovia discovery studio visualization program (https://www.3ds.com/products/biovia/discovery-studio) and subsequent analysis of the toxicity of compounds by Protox III server (https://tox.charite.de/protox3/). Further, the stability of the complex was studied by using MD simulation in water using the YASARA software tool (https://www.yasara.org/). In the preparatory phase of MD simulation, the simulation cell was set to periodic boundary conditions. The simulation was

carried out in a water environment (using the TIP3 water model), at constant pressure, with 298 K (25°C) by using an AMBER14 force field. The MD simulation was carried out for 12 nanoseconds (ns) with 121 snapshots generated every 100 pico seconds by using YASA-RA version 21.12.19. L.64. The parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg) and free energy of binding by using MM-PBSA (Molecular mechanics-Poisson— Boltzmann Surface Area) methods were analyzed after the simulation (21-22).

Results and Discussion

Retrieval of essential genes and BLAST analysis against human

463 numbers of essential genes of *Porphyromonas gingivalis* ATCC 33277 were identified from the DEG database and the protein sequences were retrieved. PSI-BLAST tool against the non-redundant protein sequence (nr) database of *Homo sapiens* (taxid:9606), resulted in 245 essential genes showed no significant similarity (non-homologous) to humans, among them genes 108 genes are likely to be encoding hypothetical proteins where obtained.

Protein-protein interaction and analysis of hub genes

All 246 sequences were used in the STRING server to analyze the network and subsequently interacting genes resulted in 6 selected hub genes (Figure 1) and the corresponding protein sequence and structural information are shown in Table 1.

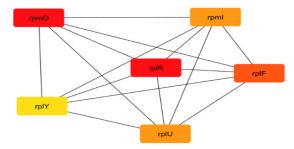


Figure 1: Showing the hub genes obtained by using Cystoscope tool

Vol. 19(4) 2653-2663, October 2025, ISSN 0973-8916 (Print), 2230-7303 (Online)

DOI: 10.5530/ctbp.2025.4.44

Table 1: Structural features and functional domain details of the selected hub gene product

S. N	Name of the gene	Function	Length of the protein	Domain*- details	Domain Position	% of residues in the most favoured regions in Ramach- andran plot	ERRAT quality factor
1	rPI R	Attachment of the 5S RNA into the large ribosomal subunit	114	Ribosom- al_L18p	2-114	94.1%	99.0291
2	rpl Y	Binds to the 5S RNA in the ribosome	192	Ribo- somal_ L25p	6-92	97.6%	93.4211
				Ribo- somal_ TL5_C	100-182		
3	rplU	Binds to 23S rRNA in the presence of protein L20	105	Ribosom- al_L21p	1-103	94.6%	95.3846
4	Rpl F	Binds to the 23S rRNA, and is import- ant in its secondary structure.	183	Ribosom- al_L6 Ribosom- al_L6	11-82 90 to 169	92.2%	97.2973
5	rpml	Belongs to the bacterial ribosomal protein bL35 family	65	Ribosom- al_L35p	2-62	96.6%	100
6	rpmD	Annotation is not available	58	Ribosom- al_L30	4 to 54	92.3%	100

^{*}Domains were predicted by SMART server (http://smart.embl-heidelberg.de/)by using the protein sequences

Screening, selection, and binding study of potential phytochemicals

DrugRep server resulted in 100 phytochemicals from TCMPD and this was analyzed by Lipinski's rule resulted in 33 phytochemicals. Further, the top 10 compounds based on the docking score were selected. Prediction of toxicity classes showed three compounds were

predicted as non-toxic (Table 2) and hence considered for further analysis. The interaction analysis of the complex showed, the molecule Mulberroside C was able to form 2 hydrogen bonds with RpLR protein receptor Gly-93 and Arg-32 as shown in Figure 2., hence considered as the potential one. Subsequently, MD simulation was performed with this complex to validate the result.

Table 2: Drug-like and toxic properties of the selected phytochemicals

ID	Name	Docking Score	MW	HBD	НВА	RB	NOA	LogP	Toxicity class	Plant sources
T5S1959	Asarinin	-7.6	354.35	0	0	2	6	2.6	Class: 3	Sichuan pepper; Dodder seed
T5691	paulownin	-7.2	370.4	1	1	3	7	1.6	Class: 3	Paulownia; Cattail pol- len; Agastache
T5S1598	Mulberroside C	-7	458.46	5	5	8	9	1.5	Class:5	Hydnocarpus

Vol. 19(4) 2653-2663, October 2025, ISSN 0973-8916 (Print), 2230-7303 (Online)

DOI: 10.5530/ctbp.2025.4.44

TQ0214	Dimethylcur- cumin	-6.9	396.43	1	2	10	6	4.6	Class: 5	Turmeric; Galangal
T2781	Sangui- narine	-6.9	332.33	0	0	0	5	4.4	Class: 4	Macleaya; Greater cel- andine; Sichuan pepper
T4518	Licochalcone D	-6.8	354.4	3	4	9	5	4.5	Class: 4	Sargentodoxa; Licorice
TN1969	N-(p-Cou- maroyl) serotonin	-6.8	322.4	3	3	8	5	3	Class: 4	Safflower
T5687	Withaferin A	-6.7	470.6	2	4	5	6	3.8	Class: 3	Sophora root
T6S0139	Neobavaiso- flavone	-6.7	322.36	2	3	5	4	3.6	Class: 5	Psoralea
T2787	Picroside I	-6.6	492.47	5	6	13	11	-1.1	class 4	Picrorhiza

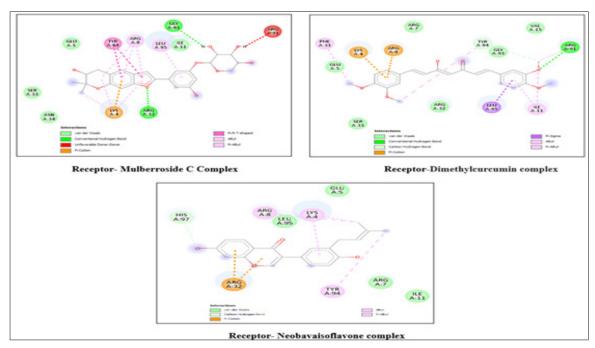


Figure 2: Ligand Interaction analysis of the selected ligands (highlighted in Table 2)

Results of Molecular dynamics simulation

The stabilities and binding affinities of the mulberroside C-rpl R protein were accessed by using the MD simulation. The significant stabilization of the complex was observed after the first 2-3 ns (Figure 3 (A). The structure of the mulberroside C-rpl R protein complex was considered stable as the RMSD values were observed to be less than or equal to 2.5 Å throughout the simulation (23-24). During these

MD simulations, the RMSF value was also monitored for the complex. The regions where mulberroside C has a large impact on rpl R residue sequences were also evaluated by RMSF analysis and the region was identified as residues number 15-25, due to greater RMSF and more flexible (25-26) (Figure 3 (B). Similarly, the compactness of the receptor-ligand complex was analyzed by Rg plot and consistent values were obtained (Figure 3 (C) (27).

Computational discovery of drug targets and potential phytochemical inhibitors for Porphyromonas gingivalis

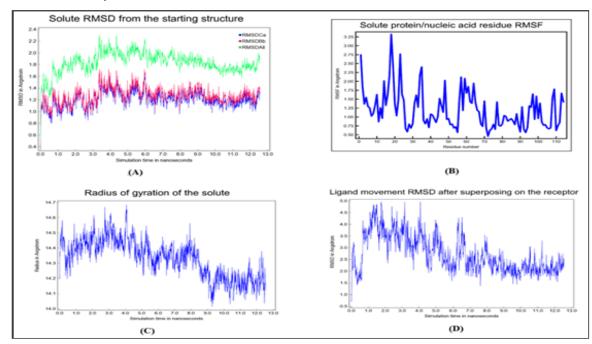
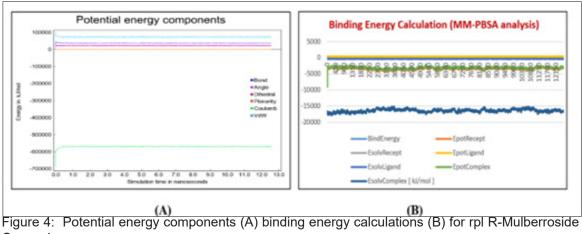



Figure 3: Parameters computed from MD simulation of rpIR-Mulberroside C complex

The movement profile of the ligand within the target's active site was analyzed by calculating the Root Mean Square Deviation (RMSD) of ligand displacement during the simulation. The calculated RMSD revealed a displacement exceeding 5 Å within the initial 1-5 nanoseconds. However, this displacement showed a decreasing trend over time, with the RMSD dropping to less than 2 Å between 5 and

12 nanoseconds. This indicates that the compound mulberroside C was able to maintain proximity to the binding site of the rpIR-receptor protein (28, 36). Further, the binding free energy of the complex was analyzed by the MM-PBSA method, which evaluates the binding energy by computing the differences in free energy between bound and unbound state structures in the receptor-ligand complex (37).

C complex

The mean binding free energy in the MM/PBSA solvation model was calculated for the mulberroside C -rpl R protein complex as -107.336 KJ/mol (Figure 4 B). Further, the binding energy of Mulberroside C was observed to be supported by only Coulomb energy; which might be responsible for producing significant binding to the receptor (Figure 4 A). The ligand movement observed during the simulation aligns with the calculated average MM-PBSA binding energy. (29-30).

Discussion

The target rpIR gene products function in the ribosome assembly process thus essential for maintaining the life cycle of the bacteria for the for-cell growth, viability, and translation in the bacteria. Hence this can be used as a suitable drug target for P.gingivalis (31-32-33). Several computational pipelines have been used to identify targets in P. gingivalis and identify suitable inhibitors against it. Molecular docking and MD simulations are currently treated as one of the important screening tools to identify therapeutic compounds against specific receptors (34-35). Drug target identification is integrated into these methods to expedite the compound selection process. Comparing the whole metabolic pathway of Porphyromonas gingivalis and Homo sapiens followed by non-homologous human protein identification has identified several targets of the pathogen (36). A high-throughput virtual screening of the ZINC chemical library identified potential small-molecule inhibitors targeting meso-diaminopimelate dehydrogenase (P. gingivalis), establishing a framework for developing new antimicrobials targeting this enzyme (37). The phytochemical Mulberroside C predicted in this work is from the mulberry plant belonging to the Moraceae family. In traditional Chinese medicine, the plant parts of the Mulberry have been used to treat fevers, liver infections, eyesight loss, obesity, diabetes, and bacterial infections (38-39-40-41-42). Cao et al. identified the potential inhibitory action of the Mulberroside C on Enterovirus A71 the infection causes cause of hand, foot, and mouth

disease in children (43). Vora et al., (2019 and 2020) implemented computational methods (docking, QSAR, and ADMET) as well as experimental methods to identify plant-derived molecules, including Mulberroside C, as promising candidates targeting multiple HIV metabolism (44-45). Similarly, in another work by Vora et al., in 2020 performed in silico methods such as pharmacophore mapping, molecular docking, molecular dynamics simulations, and ADME prediction, the study identified mulberry side C as an inhibitor for potential targets of dengue virus (46). Looking at the results of the computational study and the therapeutical importance of mulberry side C, it can be predicted that, the molecule can act as a suitable inhibitor against the rpl R protein of P. gingivalis.

Conclusion

In this study, the essential genes of the pathogenic bacteria Porphyromonas gingivalis ATCC 33277 were retrieved from the DEG database. The essential genes are aligned against the human using the PSI-BLAST algorithm. Out of 463 essential genes, 245 genes are found to be non-homologous to humans i.e., with no significant similarity, and 108 genes found to be encoding hypothetical proteins. The human non-homologous genes were subjected to protein-protein interaction analysis followed by hub genes prediction resulting in the rpIR as the drug target. Further, receptor-based screening of phytochemicals from a traditional Chinese medicine library database identified 100 promising phytochemicals as inhibitors. As a subsequent study, further screening by drug-like properties, docking score with rpIR protein, ADMET, and Molecular dynamics simulation analysis identified Mulberroside C from the plant Mulberry as the potential one that maintains stability during simulation. Since Porphyromonas gingivalis, a major pathogen in oral biofilms, is strongly associated with chronic inflammatory periodontitis and often resists conventional antibiotics, the proposed molecule can be tested experimentally to study its effectiveness in eradicating infections. Further studies, both in vitro and in vivo,

are required to better understand the efficacy of mulberroside C against *Porphyromonas gingivalis* infection.

Conflict of Interest Statement

The authors declare that there is no conflict of interest.

References

- How KY, Song KP, Chan KG. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol. 2016;7:53. doi: 10.3389/fmicb.2016.00053
- Jia L, Han N, Du J, Guo L, Luo Z, Liu Y. Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors. Front Cell Infect Microbiol. 2019;9:262. doi: 10.3389/fcimb.2019.00262
- Petersen PE, Ogawa H. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 2000. 2012;60(1):15-39. doi: 10.1111/j.1600-0757.2011.00425.x
- Kassebaum NJ, Smith AGC, Bernabé E, Fleming TD, Reynolds AE, Vos T et al. Global, Regional, and National Prevalence, Incidence, and Disability-Adjusted Life Years for Oral Conditions for 195 Countries, 1990-2015: a Systematic Analysis for the Global Burden of Diseases, Injuries, and Risk Factors. J Dent Res. 2017;96(4):380-87. doi: 10.1177/0022034517693566
- Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of Periodontitis in Adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914-20. doi: 10.1177/0022034512457373
- Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012;333(1):1-9. doi: 10.1111/j.1574-6968.2012.02579.x

- Bui FQ, Almeida-da-Silva CLC, Huynh B, TrinhA, Liu J, Woodward J et al. Association between periodontal pathogens and systemic disease. Biomed J. 2019;42(1):27-35. doi: 10.1016/j.bj.2018.12.001
- Soskolne WA, Klinger A. The relationship between periodontal diseases and diabetes: an overview. Ann Periodontol. 2001;6(1):91-98. doi: 10.1902/annals.2001.6.1.91
- Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 2017;11(2):72-80.
- Schenkein HA, Loos BG. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J Periodontol. 2013;84(4);Suppl:S51-69. doi: 10.1902/ jop.2013.134006
- Soiniemi L, Solje E, Suominen AL, Kanninen KM, Kullaa AM. The association between oral diseases and neuro-degenerative disorders. J Alzheimers Dis. 2024:13872877241289548. doi: 10.1177/13872877241289548
- Yadalam PK, Sivasankari T, Rengaraj S, Mugri MH, Sayed M, Khan SS et al. Gene interaction network analysis reveals IFI44L as a drug target in rheumatoid arthritis and periodontitis. Molecules. 2022;27(9):2749. doi: 10.3390/molecules27092749
- 13. Feres M, Figueiredo LC, Soares GMS, Faveri M. Systemic antibiotics in the treatment of periodontitis. Periodontol 2000. 2015;67(1):131-86. doi: 10.1111/prd.12075
- Heta S, Robo I. The Side Effects of the Most Commonly Used Group of Antibiotics in Periodontal Treatments. Med Sci. 2018;6(1):6. doi: 10.3390/medsci6010006.
- Schmuch J, Beckert S, Brandt S, Löhr G, Hermann F, Schmidt TJ et al. Extract from Rumex acetosa L. for prophylaxis of periodontitis: inhibition of bacteri-

- al in vitro adhesion and of gingipains of Porphyromonas gingivalis by epicate-chin-3-O-($4\beta \rightarrow 8$)-epicatechin-3-O-gallate (procyanidin-B2-Di-gallate). PLOS ONE. 2015;10(3):e0120130. doi: 10.1371/journal.pone.0120130
- Bezerra JJL, da Silva JMD. Dental applications of Punica granatum L. in the treatment of gingivitis: a review of ethnomedicinal uses, randomized clinical trials, and antibacterial potential against Porphyromonas gingivalis. J Ethnopharmacol. 2024:118701.
- 17. Peeran SW, Murugan M, Fageeh H, Ibrahim W, Al-Ak'hali MS, Basheer SN, Mohamed AMB. In-vitro evaluation of wild bitter melon (Momordica charantia) extracts against periodontopathic bacteria (Prevotella intermedia and Porphyromonas gingivalis) using antibacterial, anti-inflammatory and molecular docking analysis. J Pharm Bioallied Sci. 2024;16;Suppl 2:S1554-64. doi: 10.4103/jpbs.jpbs 512 23
- 18. Zhang R, Ou H-Y, Zhang C-T. DEG: a database of essential genes. Nucleic Acids Res. 2004;32((Database issue)):D271-2. doi: 10.1093/nar/gkh024
- Gan J-H, Liu J-X, Liu Y, Chen S-W, Dai W-T, Xiao Z-X, Cao Y. DrugRep: an automatic virtual screening server for drug repurposing. Acta Pharmacol Sin. 2023;44(4):888-96. doi: 10.1038/s41401-022-00996-2
- Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337-41. doi: 10.1016/j.ddtec.2004.11.007, Pubmed:24981612.
- Krieger E, Vriend G. YASARA View molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 2014;30(20):2981-2. doi: 10.1093/bioinformatics/btu426
- 22. Ilmiawan L, Tjandrawinata RR, Prasasty

- VD. In silico study binding affinity of regdanvimab-RBD spike protein SARS CoV-2 Omicron variant Indonesia. J Appl Pharm Sci. 2024;14(1):261-72. doi: 10.7324/JAPS.2024.157624.
- Prasasty VD, Istyastono EP. Short communication: structure-based design and molecular dynamics simulations of pentapeptide AEYTR as a potential acetylcholinesterase inhibitor. Indones J Chem. 2020;20(4):953-59. doi: 10.22146/jjc.46329.
- Istiyastono EP. Molecular dynamics studies of matrix metalloprotenase-9 stabilization by caffeic acid. J Farm Galenika (Galenika J Pharm). 2020;6(2):280-85. doi: 10.22487/j24428744.2020. v6.i2.15013.
- Abusham RAK, Masomian M, Salleh AB, Leow ATC, Rahman RNZR. An in-silico approach to understanding the structure-function: a molecular dynamics simulation study of rand serine protease properties from Bacillus subtilis in aqueous solvents. Adv Biotechnol Microbiol. 2019;12(2):9-17. doi: 10.19080/AIBM.2019.12.555828.
- 26. da Fonseca AM, Caluaco BJ, Madureira JMC, Cabongo SQ, Gaieta EM, Djata F et al. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGB-SA. Mol Biotechnol. 2024;66(8):1919-33. doi: 10.1007/s12033-023-00831-x, Pubmed:37490200.
- 27. Hebbar A, Dey P, Vatti AK. Lysozyme stability in various deep eutectic solvents using molecular dynamics simulations. J Biomol Struct Dyn. 2023:1-9. doi: 10.1080/07391102.2023.2275178.
- 28. Odhar HA, Hashim AF, Ahjel SW, Humadi SS. Molecular docking and dynamics simulation analysis of the human FXIIa

Vol. 19(4) 2653-2663, October 2025, ISSN 0973-8916 (Print), 2230-7303 (Online)

DOI: 10.5530/ctbp.2025.4.44

- with compounds from the Mcule database. Bioinformation. 2023;19(2):160-6. doi: 10.6026/97320630019160
- Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov. 2017;13(1):115. doi: 10.1080/17460441.2 018.1403419.
- Hosen SMZ, Rubayed M, Dash R, Junaid M, Mitra S, Alam MS, Dey R. Prospecting and structural insight into the binding of novel plant-derived molecules of Leea indica as inhibitors of BACE1. Curr Pharm Des. 2018;24(33):3972-9. doi: 10.2174/13 81612824666181106111020
- Satpathy R, Acharya S. Exploring the mangrove based phytochemicals as potential viral RNA helicase inhibitors by in silico docking and molecular dynamics simulation methods. Math. Biol.Bioinf. 2023;18(2):405-17. doi: 10.17537/2023.18.405.
- 32. Lewis JP, Dawson JA, Hannis JC, Muddiman D, Macrina FL. Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J Bacteriol. 1999;181(16):4905-13. doi: 10.1128/JB.181.16.4905-4913.1999
- Aseev LV, Bylinkina NS, Boni IV. Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria. Rna. 2015;21(5):851-61. doi: 10.1261/rna.047381.114
- Korepanov AP, Gongadze GM, Garber MB, Court DL, Bubunenko MG. Importance of the 5 S rRNA-binding ribosomal proteins for cell viability and translation in Escherichia coli. J Mol Biol. 2007;366(4):1199-208. doi: 10.1016/j.jmb.2006.11.097
- Satpathy R. In silico modeling and docking study of potential helicase (nonstructural proteins) inhibitors of novel coronavirus 2019 (severe acute respiratory syndrome

- coronavirus 2). Biomed Biotechnol Res J. 2020;4(4):330-6. doi: <u>10.4103/bbrj.</u> <u>bbrj 149 20</u>
- Satpathy R, Acharya S, Behera R. Computational design, docking, and molecular dynamics simulation study of RNA helicase inhibitors of dengue virus. J Vector Borne Dis. 2024;4103:10. doi: 10.4103/JVBD. JVBD 188 23
- Sao P, Chand Y, Kumar A, Singh S. Potential drug target identification in Porphyromonas gingivalis using in-silico subtractive metabolic pathway analysis. Bangladesh J Med Sci. 2021;20(4):887-96. doi: 10.3329/bjms.v20i4.54149
- 38. Safi AUR, Bendixen E, Rahman H, Khattak B, Wu W, Ullah W et al. Molecular identification and differential proteomics of drug resistant Salmonella Typhi. Diagn Microbiol Infect Dis. 2023;105(4):115883. doi: 10.1016/j.diagmicrobio.2022.115883
- 39. Wen P, Hu T-G, Linhardt RJ, Liao S-T, Wu H, Zou Y-X. Mulberry: a review of bioactive compounds and advanced processing technology. Trends Food Sci Technol. 2019;83:138-58. doi: 10.1016/j. tifs.2018.11.017.
- Naeem MY. Medicinal potentials and health benefits of black mulberry. Eurasian J Food Sci Technol. 2020;4(1):1-5.
- Kadam RA, Dhumal ND, Khyade VB. The Mulberry, Morus alba (L.): the medicinal herbal source for human health. Int J Curr Microbiol Appl Sci. 2019;8(4):2941-64. doi: 10.20546/ijcmas.2019.804.341.
- 42. Dimitrijević D, Arsić B, Kostić D. Medicinal uses of mulberry. In: Mulberry. CRC Press; 2021. p. 45-57.
- 43. Cao Y, Lei E, Li L, Ren J, He X, Yang J, Wang S. Antiviral activity of Mulberroside C against enterovirus A71 in vitro and in vivo. Eur J Pharmacol. 2021;906:174204. doi: 10.1016/j.ejphar.2021.174204

- 44. Vora J, Patel S, Sinha S, Sharma S, Srivastava A, Chhabria M, Shrivastava N. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV. J Biomol Struct Dyn. 2019;37(1):131-46. doi: 10.1080/07391102.2017.1420489
- 45. Vora J, Velhal S, Sinha S, Patel V, Shrivastava N. Bioactive phytocompound mulberroside C and endophytes of Morus alba as potential inhibitors of HIV-1 rep-
- lication: a mechanistic evaluation. HIV Med. 2021;22(8):690-704. doi: 10.1111/hiv.13116
- 46. Vora J, Patel S, Athar M, Sinha S, Chhabria MT, Jha PC, Shrivastava N. Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. J Biomol Struct Dyn. 2020;38(6):1726-40. doi: 10.1080/07391102.2019.1615002