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Abstract

The current work attempts to discover
some new drug targets in the case of Porphy-
romonas gingivalis ATCC 33277 using compu-
tational methods. The 245 numbers of selected
essential genes in the case of bacteria P. gin-
givalis ATCC 33277 were obtained by search-
ing the total no. of 463 genes available in the
Database of Essential Genes (DEG) database
by using Basic Local Alignment Search Tool
(BLAST) tool against the Human (Homo sapi-
ens) genome. Screening of the target molecule
was performed based on (expectation) E-value,
similarity score, and query coverage. Further,
the gene interaction network was constructed
by the STRING database, and potential hub
genes were identified by the Cytohubba mod-
ule of the Cytoscape tool. rpIR gene encoding
large ribosomal subunit protein was chosen as
the target. Further receptor-based screening of
traditional Chinese medicinal compounds using
docking, toxicity, and molecular dynamics sim-
ulations identified Mulberroside C as a potential
inhibitor. Since it is a computational work further
experiment is necessary to validate the predic-
tion.

Keywords: Porphyromonas gingivalis, essen-
tial genes, BLAST score, drug target, com-
pound screening, docking, Molecular dynamics
simulation

Introduction

Porphyromonas  gingivalis is a
Gram-negative, obligate anaerobic bacterium
that resides in the oral cavity and is the pri-
mary causative agent of chronic inflammatory
periodontitis. This infection affects 10-15% of
adults throughout the world and can lead to
significant health complications and mortality in
severe cases. The existence of drug-resistant
forms of Porphyromonas is currently a major
challenge for the discovery of novel effective
drugs. Periodontal disease refers to a group of
inflammatory conditions in the oral cavity, trig-
gered by pathogenic microorganisms that cre-
ate a complex biofilm on tooth surfaces, leading
to the destruction of the supporting structures
of the teeth. The severity of this illness varies
from moderate gingival inflammation (gingivi-
tis) to chronic breakdown of connective tissues,
the creation of a periodontal pocket, and loss
of teeth (1-2). Periodontal diseases are com-
monly found in most of the human populations
across the world and they result in a significant
and a major, gradual health concern. According
to a report from the World Health Organization
(WHO), 10-15% of the adult populations world-
wide (~538 million) are affected by periodontal
disease (3-4-5). According to recent epidemi-
ological data periodontal disease is most prev-
alent in the adult population specifically over
30 years of age and causes tooth loss among
adults (6). Many recent clinical, experimental,
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and epidemiological studies and evidence in the
literature suggest the significant impact of the
pathogen Porphyromonas either directly or in-
directly on overall human health. For example,
establishing the relationship between periodon-
tal diseases and inflammation and the progres-
sion of other systemic diseases is an interesting
aspect for researchers to conduct multidisci-
plinary research. Several studies have shown
that the disease periodontitis is associated with
various non-oral and potentially deadly system-
ic diseases, including cardiovascular diseases,
cancer, diabetes type Il, respiratory tract infec-
tion, AIDS, Down’s syndrome, musculoskeletal,
neurodegenerative diseases e.g., Alzheimer
disease (AD) and so on (7-8-9-10-11). Also,
a gene expression study explored the molec-
ular link between periodontitis and rheumatoid
arthritis (RA) to identify shared therapeutic tar-
gets. Differentially expressed genes (DEGs)
from both conditions were analyzed, and the
key interconnecting gene involved periodontitis
and RA (12).

Antibiotic treatments somehow show a
few side effects and some adverse conditions.
So, with the identification of potential targets and
a target-based approach in the drug design, we
can target the particular metabolic pathway or
some of the specific target proteins that is critical
to the growth, metabolism, survival, and patho-
genesis of the bacteria. In this review, some of
the actions of drugs and antibiotics along with
different methods used to identify potential drug
targets with therapeutic effects were discussed
in brief (13-14). So as an alternative therapeutic
molecule, several phytochemicals are currently
being studied to explore their potential inhibitor
nature against P. gingivalis. Schmuch et al. in-
vestigated the anti-adhesive effects of a proan-
thocyanidin-enriched extract from Rumex ace-
tosa on Porphyromonas gingivalis that contains
compounds such as flavan-3-ols, oligomeric
proanthocyanidins, and flavonoids (15). A study
by Bezerra, J. J. L., & da Silva suggested the
non-toxic natural products obtained from Puni-
ca granatum can be considered as an alterna-

tive to the recommended commercial products
used for the treatment of gingivitis (16). Peeran
et al. investigated the antibacterial and anti-in-
flammatory potential of Momordica charantia
extracts. Phytochemical analysis revealed sig-
nificant levels of alkaloids, flavonoids, phenols,
and tannins exhibited inhibitory nature against
Porphyromonas gingivalis (17).

The objective of the work is to use computation-
al methods to predict a suitable drug target for
Porphyromonas gingivalis and screen suitable
phytochemical inhibitors against the predicted
target.

Materials and Methods

Retrieval of essential genes of Porphyro-
monas gingivalis ATCC 33277

The essential genes of the pathogen
Porphyromonas gingivalis ATCC 33277 were
searched and retrieved from the Database of
Essential Genes (DEG) (http://tubic.tju.edu.cn/
deg/) (accessed on 24.10.2023) (18). DEG is
user friendly freely accessible database, con-
tains the record for all the available essential
genes. Along with nucleotide and protein se-
quence information each entry also contains a
unique DEG identification number with function
details.

Searching of human non-homologous
retrieved essential genes

To study and investigate the non-ho-
mologous essential genes of the bacteria P,
gingivalis ATCC 33277, the Basic Local Align-
ment Search Tool (BLAST) program was used.
Among these Position Specific Iterated BLAST
(PSI-BLAST) was chosen to accurately investi-
gate the essential genes of P. gingivalis ATCC
33277, which are non-homologous to the hu-
man.

Protein-protein interaction study and
prediction of hub genes

The functional protein association net-
works of the non -homologous genes were ob-
tained using the STRING (Search Tool for the
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Retrieval of Interacting Genes) database avail-
able at https://string-db.org/. Subsequently, the
hub genes were identified by using the plug-in
CytoHubba (https://apps.cytoscape.org/apps/
cytohubba) in the Cytoscape version 3.10.3
tool. From the Cytohubba application, identifi-
cation of the best 6 hub genes occurs by using
the maximal clique centrality (MCC) method.

Selection of the receptor proteins and
screening of phytochemicals from the tradi-
tional Chinese medicine library database

The interacting proteins were analyzed
and the best one was selected as the recep-
tor molecule from the hub-gene network. Since
the experimental 3D structures were not avail-
able, hence the Alpha fold predicted structure
was considered for further study (https://alpha-
fold.ebi.ac.uk/search/text/AF-B2RLX6-F1). The
structure was validated by plotting the Ram-
achandran plot with the PROCHECK program
and computing quality by ERRAT by using the
SAVES server (https://saves.mbi.ucla.edu/).
Further, the receptor molecule was used in the
DrugReP server for screening of potential phy-
tochemicals from the traditional Chinese med-
icine library (http://cao.labshare.cn/drugrep/).
Drug rep is a server that facilitates both recep-
tor-based or ligand-based screening over drug
libraries for a given molecule. The screening
results were obtained in the ranked form ac-
cording to the docking scores (19).

Selection of potential phytochemicals and
MD simulation

Screening of the resulting molecules
from the DrugReP was performed by using
Lipinski's rule of five (20), ligand interaction
analysis by the Biovia discovery studio visu-
alization program (https://www.3ds.com/prod-
ucts/biovia/discovery-studio) and subsequent
analysis of the toxicity of compounds by Pro-
tox Il server (https://tox.charite.de/protox3/).
Further, the stability of the complex was stud-
ied by using MD simulation in water using the
YASARA software tool (https://www.yasara.
org/). In the preparatory phase of MD simu-
lation, the simulation cell was set to period-
ic boundary conditions. The simulation was

carried out in a water environment (using the
TIP3 water model), at constant pressure, with
298 K (25°C) by using an AMBER14 force field.
The MD simulation was carried out for 12
nanoseconds (ns) with 121 snapshots gener-
ated every 100 pico seconds by using YASA-
RA version 21.12.19. L.64. The parameters
such as root mean square deviation (RMSD),
root mean square fluctuation (RMSF), radius
of gyration (Rg) and free energy of binding by
using MM-PBSA (Molecular mechanics-Pois-
son— Boltzmann Surface Area) methods were
analyzed after the simulation (21-22).

Results and Discussion

Retrieval of essential genes and BLAST
analysis against human

463 numbers of essential genes of
Porphyromonas gingivalis ATCC 33277 were
identified from the DEG database and the pro-
tein sequences were retrieved. PSI-BLAST tool
against the non-redundant protein sequence
(nr) database of Homo sapiens (taxid:9606),
resulted in 245 essential genes showed no sig-
nificant similarity (non-homologous) to humans,
among them genes 108 genes are likely to be
encoding hypothetical proteins where obtained.

Protein-protein interaction and analysis of
hub genes

All 246 sequences were used in the
STRING server to analyze the network and sub-
sequently interacting genes resulted in 6 select-
ed hub genes (Figure 1) and the corresponding
protein sequence and structural information are
shown in Table 1.
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Figure 1: Showing the hub genes obtained by
using Cystoscope tool
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Table 1: Structural features and functional domain details of the selected hub gene product
S. N [ Name of Function Length | Domain*- | Domain % of residues in ERRAT
the gene of the details Position | the most favoured quality
protein regions in Ramach- factor
andran plot
1 rPIR | Attachment of the 5S | 114 | Ribosom- 2-114 94.1% 99.0291
RNA into the large al_L18p
ribosomal subunit
2 rpl Y Binds to the 5S RNA | 192 Ribo- 6-92 97.6% 93.4211
in the ribosome somal_
L25p
Ribo- 100-182
somal_
TL5 C
3 rplU Binds to 23S rRNA 105 | Ribosom- 1-103 94.6% 95.3846
in the presence of al_L21p
protein L20
4 Rpl F Binds to the 23S 183 | Ribosom- 11-82 92.2% 97.2973
rRNA, and is import- al_L6
ant in its secondary Rib
ibosom-
structure. al L6 90 to 169
5 rpml Belongs to the 65 Ribosom- 2-62 96.6% 100
bacterial ribosomal al_L35p
protein bL35 family
6 rpmD Annotation is not 58 Ribosom- | 4 to 54 92.3% 100
available al_L30

*Domains were predicted by SMART
sequences

Screening, selection, and binding study of
potential phytochemicals

DrugRep server resulted in 100 phyto-
chemicals from TCMPD and this was analyzed
by Lipinski’s rule resulted in 33 phytochemi-
cals. Further, the top 10 compounds based on
the docking score were selected. Prediction of
toxicity classes showed three compounds were

server (http://smart.embl-heidelberg.de/)by using the protein

predicted as non-toxic (Table 2) and hence
considered for further analysis. The interaction
analysis of the complex showed, the molecule
Mulberroside C was able to form 2 hydrogen
bonds with RpLR protein receptor Gly-93 and
Arg-32 as shown in Figure 2., hence considered
as the potential one. Subsequently, MD simula-
tion was performed with this complex to validate
the result.

Table 2: Drug-like and toxic properties of the selected phytochemicals

Docking Toxicity
ID Name Score MW HBD | HBA | RB | NOA | LogP class Plant sources
T5S1959 | Asarinin -7.6 354.35 0 0 2 6 2.6 . Sichuan pepper; Dodder
Class: 3
seed
T5691 paulownin -7.2 370.4 1 1 3 7 1.6 . Paulownia; Cattail pol-
Class: 3 .
len; Agastache
T5S1598 | Mulberroside -7 458.46 5 5 8 9 1.5
C Class:5 | Hydnocarpus
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TQ0214 | Dimethylcur- -6.9 396.43 1 2 10 6 4.6 .
: Class: 5 .
cumin Turmeric; Galangal
T2781 Sangui- -6.9 332.33 0 0 0 5 4.4 Macl G |
narine Class: 4 acleaya; reater cel-
andine; Sichuan pepper
T4518 Licochalcone -6.8 354.4 3 4 9 5 4.5 .
Class: 4 e
D Sargentodoxa; Licorice
TN1969 N-(p-Cou- -6.8 322.4 3 3 8 5 3
maroyl) Class: 4
serotonin Safflower
T5687 Withaferin A -6.7 470.6 2 4 3.8 | Class: 3 | Sophora root
T6S0139 | Neobavaiso- -6.7 322.36 3.6 .
Class: 5
flavone Psoralea
T2787 Picroside | -6.6 492.47 5 6 13 11 -1.1 class 4 | Picrorhiza
= = e -
= & omam el o4 . = = =5
B - BTt —
== o e o
Recepior- Alulberroside C Complex Recepior-Dimethylcurcomin complex
Receptor- Necbavaisoflavons complex

Figure 2: Ligand Interaction analysis of the selected ligands (highlighted in Table 2)

Results of Molecular dynamics simulation

The stabilities and binding affinities of the
mulberroside C-rpl R protein were accessed
by using the MD simulation. The significant
stabilization of the complex was observed af-
ter the first 2-3 ns (Figure 3 (A). The structure
of the mulberroside C-rpl R protein complex
was considered stable as the RMSD values
were observed to be less than or equal to 2.5 A
throughout the simulation (23-24). During these

MD simulations, the RMSF value was also mon-
itored for the complex. The regions where mul-
berroside C has a large impact on rpl R resi-
due sequences were also evaluated by RMSF
analysis and the region was identified as resi-
dues number 15-25, due to greater RMSF and
more flexible (25-26) (Figure 3 (B). Similarly,
the compactness of the receptor-ligand com-
plex was analyzed by Rg plot and consistent
values were obtained (Figure 3 (C) (27).
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Figure 3: Parameters computed from MD simulation of rpIR-Mulberroside C complex

The movement profile of the ligand
within the target’s active site was analyzed by
calculating the Root Mean Square Deviation
(RMSD) of ligand displacement during the sim-
ulation. The calculated RMSD revealed a dis-
placement exceeding 5 A within the initial 1-5
nanoseconds. However, this displacement
showed a decreasing trend over time, with the
RMSD dropping to less than 2 A between 5 and

12 nanoseconds. This indicates that the com-
pound mulberroside C was able to maintain
proximity to the binding site of the rpIR-receptor
protein (28, 36). Further, the binding free energy
of the complex was analyzed by the MM-PBSA
method, which evaluates the binding energy by
computing the differences in free energy be-
tween bound and unbound state structures in
the receptor-ligand complex (37).

Potential energy componeanis
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The mean binding free energy in the
MM/PBSA solvation model was calculated for
the mulberroside C -rpl R protein complex as
-107.336 KJ/mol (Figure 4 B). Further, the bind-
ing energy of Mulberroside C was observed to
be supported by only Coulomb energy; which
might be responsible for producing significant
binding to the receptor (Figure 4 A). The ligand
movement observed during the simulation
aligns with the calculated average MM-PBSA
binding energy. (29-30).

Discussion

The target rpIR gene products function
in the ribosome assembly process thus essen-
tial for maintaining the life cycle of the bacteria
for the for-cell growth, viability, and translation in
the bacteria. Hence this can be used as a suit-
able drug target for P.gingivalis (31-32-33). Sev-
eral computational pipelines have been used to
identify targets in P. gingivalis and identify suit-
able inhibitors against it. Molecular docking and
MD simulations are currently treated as one of
the important screening tools to identify thera-
peutic compounds against specific receptors
(34-35). Drug target identification is integrated
into these methods to expedite the compound
selection process. Comparing the whole meta-
bolic pathway of Porphyromonas gingivalis and
Homo sapiens followed by non-homologous hu-
man protein identification has identified several
targets of the pathogen (36). A high-throughput
virtual screening of the ZINC chemical library
identified potential small-molecule inhibitors
targeting meso-diaminopimelate dehydroge-
nase (P. gingivalis), establishing a framework
for developing new antimicrobials targeting this
enzyme (37). The phytochemical Mulberroside
C predicted in this work is from the mulberry
plant belonging to the Moraceae family. In tra-
ditional Chinese medicine, the plant parts of the
Mulberry have been used to treat fevers, liver
infections, eyesight loss, obesity, diabetes, and
bacterial infections (38-39-40-41-42). Cao et
al. identified the potential inhibitory action of
the Mulberroside C on Enterovirus A71 the in-
fection causes cause of hand, foot, and mouth

disease in children (43). Vora et al., (2019 and
2020) implemented computational methods
(docking, QSAR, and ADMET) as well as exper-
imental methods to identify plant-derived mol-
ecules, including Mulberroside C, as promising
candidates targeting multiple HIV metabolism
(44-45). Similarly, in another work by Vora et
al., in 2020 performed in silico methods such as
pharmacophore mapping, molecular docking,
molecular dynamics simulations, and ADME
prediction, the study identified mulberry side C
as an inhibitor for potential targets of dengue
virus (46). Looking at the results of the compu-
tational study and the therapeutical importance
of mulberry side C, it can be predicted that, the
molecule can act as a suitable inhibitor against
the rpl R protein of P. gingivalis.

Conclusion

In this study, the essential genes of the
pathogenic bacteria Porphyromonas gingivalis
ATCC 33277 were retrieved from the DEG da-
tabase. The essential genes are aligned against
the human using the PSI-BLAST algorithm. Out
of 463 essential genes, 245 genes are found
to be non-homologous to humans i.e., with no
significant similarity, and 108 genes found to
be encoding hypothetical proteins. The human
non-homologous genes were subjected to pro-
tein-protein interaction analysis followed by hub
genes prediction resulting in the rpIR as the drug
target. Further, receptor-based screening of
phytochemicals from a traditional Chinese med-
icine library database identified 100 promising
phytochemicals as inhibitors. As a subsequent
study, further screening by drug-like properties,
docking score with rpIR protein, ADMET, and
Molecular dynamics simulation analysis identi-
fied Mulberroside C from the plant Mulberry as
the potential one that maintains stability during
simulation. Since Porphyromonas gingivalis, a
major pathogen in oral biofilms, is strongly as-
sociated with chronic inflammatory periodontitis
and often resists conventional antibiotics, the
proposed molecule can be tested experimental-
ly to study its effectiveness in eradicating infec-
tions. Further studies, both in vitro and in vivo,
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are required to better understand the efficacy of
mulberroside C against Porphyromonas gingi-
valis infection.
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