Growth promotion and response of staple crops to inoculation with *Azospirillum:* A review

Rishabh Goel, and Rachana Singh*

Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201301, Uttar Pradesh, India *Corresponding author: rsingh2@amity.edu

Abstract

Azospirillum, a genus of plant growth-promoting rhizobacteria, has garnered increasing attention for its pivotal role in sustainable agriculture. It has the capability to increase yield in many crops of agronomic importance especially staple crops by various mechanisms. This review explores the diverse potential of Azospirillum spp. in farming, examining how different crops respond to these bacteria. A key focus of this review is Azospirillum 's ability to convert atmospheric nitrogen into bioavailable nitrogen for plant which boosts soil nutrients and helps plants grow better. Besides nitrogen fixation, the paper discusses many other benefits linked to Azospirillum spp., such as phytohormones production for plant growth promotion, enhancing plant stress tolerance, and ultimately helping farming stay sustainable strong. This review thoroughly investigates the effect of Azospirillum inoculation on staple crops including wheat, maize, rice and sugarcane. It explores the complex relationships these crops have developed with Azospirillum spp., uncovering numerous advantages of these interactions.

Keywords: Azospirillum, plant growth-promoting rhizobacteria, staple crops, rhizobacteria

Introduction

The agricultural sector holds pivotal significance in enhancing food accessibility and attaining food security. Agriculture is a high-risk sector, with outcomes predominantly influenced by environmental conditions (1). Crops are frequently subjected to variety of stressors, including drought conditions,

pathogenic microbial infections, cultivation in saline soils, or exposure to soils contaminated with hydrocarbons, heavy metals, pesticides, radioactive substances, or perchlorates(2). The rapid growth in the global population necessitates enhanced agricultural output and the advancement of food quality to meet fundamental requirements. Despite consensus regarding the anticipated surge in global food demand in forthcoming decades, uncertainties persist regarding agriculture's ability to meet this demand through expanded food production (3).

Conventional agricultural methods, encompassing the use of chemical fertilizers and pesticides, serve to safeguard plants from pathogens, consequently enhancing yield, but the chemical constituents within these agricultural substances pose significant environmental hazards, leading to pollution of soil, air, and water resources (1.3).

Current situation demands for a sustainable and organic approach to boost agricultural production. Employing plant growth promoting microorganisms (PGPM) that promote plant growth is among the most promising approaches to tackle the crisis (4). These microbes play a vital role in organic matter decomposition, contributing to the production of humus and significantly impacting soil quality and structure. Their involvement extends to preserving biological equilibrium, facilitating nutrient recycling between soil and roots. Additionally, they mitigate surface erosion losses, and also regulate soil pH, maintain mineral and nutrient balance, and enhance soil fertility (5).

The utilization of PGPM belonging mainly to the genera like *Pseudomonas*, *Agrobacterium* or *Azospirillum* showcases

significant potential in enhancing plant growth and performance across various species(6). For instance, Acinetobacter sp. RG30 and Pseudomonas putida GN04 exhibit remarkable effects on Corn (Zea mays), demonstrating increased tolerance to copper, elevated chlorophyll content, and heightened copper concentration in tissues (7), Similarly, Agrobacterium sp. 10C2 influences Phaseolus vulgaris positively by stimulating nodule formation, boosting plant biomass, and enriching the content of phosphorus, polyphenols, and flavonoids in grains, alongside inducing changes in the microbial community structure (8).

Azospirillum, recognized as a key genus among PGPR, exhibits the capability to inhabit the roots of numerous plant species, thereby fostering their growth through different pathways including synthesis of metabolites like plant hormones, its utility as biofertilizers, its capacity to enhance plant stress tolerance against salinity and water stress. Staple crops, such as rice, wheat, maize, and millets, form the cornerstone of global food security(9). However, their productivity is often limited by various biotic and abiotic stresses, declining soil fertility, and excessive use of chemical fertilizers. Integrating Azospirillum inoculation offers a sustainable alternative to address these challenges while supporting environmentally friendly farming practices (10, 11).

In this review, we had described the role of *Azospirillum* in plant growth promotion by production of phytohormones, biological nitrogen fixation, biological control agent and mitigation of different types of stress along with a comprehensive overview of the effects of *Azospirillum* on different staple crops.

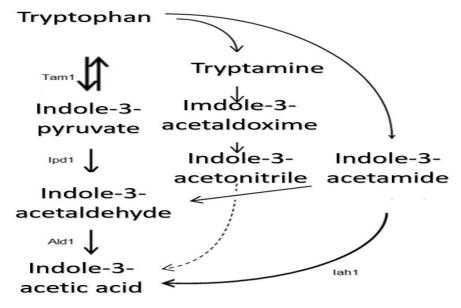
Biology of Azospirillum

Microorganisms classified under the genus Azospirillum are free-living plant growth-promoting bacteria. They help in the development of various plant species, including those with significant agronomic and ecological value(12). Azospirillum has multiple mode of action. The prevailing hypothesis regarding the mode of action of Azospirillum is its role in promoting plant growth by production

of phytohormones, biological nitrogen fixation, biological control agent and mitigation of different types of stress (13). *Azospirillum* has been shown to enhance the agricultural productivity of staple crops such as wheat, maize, rice, and sugarcane. Additionally, it has been applied successfully to chili peppers, various fruit tree species, and cacti (14).

Each Azospirillum strain displays a unique genomic configuration characterized by a variable count of plasmids, typically ranging from one to six. Members of the Azospirillum genus showcase notable genome size variations, exemplified by A. irakense which has genome of 4800 kb, A. lipoferum has 9600 kb and A. brasilense has approximately 7000 kb(6). It is noteworthy that mega plasmids emerge as a distinctive genetic hallmark, some of which exhibit linear conformations. The widespread presence of these mega plasmids represents a prominent and enduring characteristic, constituting one of the principal genomic attributes historically documented within the Azospirillum genus. The count of mega plasmid replicons exhibits species-specific disparities, typically spanning from 7 to 8, and, in some instances, expanding to encompass up to 10 such genetic entities. These plasmids exhibit consistent presence in Azospirillum strains, existing as solitary copies within individual cells (12). Beyond the plasmid, the occurrence of Mini chromosomes has been duly recorded, for instance, the genome of A. brasilense has multiple chromosomes having replicons of 600 kb. 1000 kb. and 1700 kb in size, with the presence of additional 2500 kb chromosome(9).

Azospirillum role in plant growth promotion Production of Phytohormones


Flora necessitates luminosity, aqueous sustenance, oxygenation, minerals, and assorted nutrients to facilitate their physiological expansion and maturation. In addition to these basic needs, they also rely on specific organic compounds known as phytohormones to start, regulate, and control their growth processes (15). Phytohormones,

or plant hormones, are endogenously occurring organic compounds found in trace amounts, exerting their effects locally or remotely on the plant. Demonstrating varied chemical properties and unique structural configurations, these chemical mediators influence holistic plant growth and development via diverse biochemical pathways (16). These growth modulators coordinate the plant's responses simultaneously according to biotic and abiotic stressors. These phytohormones induce alterations in the metabolism as well as morphology of the plant, resulting in enhanced mineral and water uptake, thereby fostering the development of larger and healthier plants(17).

Azospirillum spp. are widely known for their ability to produce various phytohormones like Indole-3-acetic acid, Gibberellins, abscisic acid, Polyamines, Cytokinins and Ethylene(18). Various phytohormones and growth regulators such as putrescine, spermine, spermidine, and cadaverine, were found in the culture supernatant of different strains of Azospirillum (19). Most strains of Azospirillum, when subjected to fermentation

for inoculant preparation, demonstrate the capacity to biosynthesize a spectrum of growth regulators at concentrations sufficient to instigate morphological and physiological changes in emerging seed tissues (20).

The mechanisms by which Azospirillum promotes plant growth through the production of phytohormones, are diverse and multifaceted (21); like IAA in Azosperillium is known to be biosynthesised by three mechanisms which are related to tryptophan metabolism (Fig. 1); namely, formation via indole-3-pyruvic acid (IPvA) indole-3-acetaldehyde: tryptophan conversion to indole-3-acetaldoxyme and indole-3-acetonitrile (IAN); and indole-3-acetamide formation. The exclusion of tryptophan from the Azosperillium culture significantly reduces indole-3-acetic acid production by the microbial population in the culture (22,23). Conversely, supplementation with exogenous tryptophan enhance the biosynthesis. Gibberellins are synthesized by the terpenoid pathway(20,24). Table 1 shows phytohormones different produced

Fig. 1: Biosynthesis of Indole-3-acetic acid in *Azospirillum* by tryptophan metabolism - formation via indole-3-pyruvic acid (IPyA) and indole-3-acetaldehyde; tryptophan conversion to indole-3-acetaldoxyme and indole-3-acetonitrile (IAN) and via indole-3-acetamide formation(25).

Goel et al.

Azospirillum species along with their effect on growth and development of plants.

Nitrogen fixation

Nitrogen is regarded as the limiting factor for plant growth and development despite it is present abundantly in atmosphere. Nitrogen holds a prominent position within the plant metabolic framework, as it is integrally involved in crucial physiological processes, particularly those associated with protein synthesis(41). Therefore, nitrogen application is essential to enhance crop production. Nitrogen exerts a dual influence by not only increasing the crop yield but by enhancing the quality of food. Increment in the rate of nitrogen cause increment in photosynthetic processes, area of leaf and net assimilation rate (42). Many crops are incapable to utilize the freely available nitrogen present in the atmosphere and necessitates synthetic nitrogen fertilizers which contributes in global warming and various types of pollutions in the atmosphere (43). Nitrogen fixing bacteria has a crucial role in the conversion of atmospheric nitrogen into bioavailable form used by plants(44). Azospirillum spp. stands out as a highly proficient nitrogen fixation agent in agricultural field, particularly under optimal conditions for biological nitrogen fixation(45). Around 18 percent nitrogen of the plants are derived by biological nitrogen fixation(46). Numerous investigations on Azospirillum inoculation consistently underscore nitrogen fixation as the primary mechanism by which Azospirillum favours plant growth, either in a free-living state or in symbiotic association with plants(41,43). Around 50 percent, of the nitrogen content in crops such as sugarcane, paspalum notatum and panicum maximum, could be nitrogen-fixing from symbiotic sourced microorganisms, mainly Azospirillum (45,47).

In Azospirillum, enzyme nitrogenase mediates nitrogen fixation(48). Nitrogenase facilitates the reduction of atmospheric nitrogen (N \square) to ammonia (NH \square). Ammonia is then released in the rhizosphere, where plants can directly use it or can be converted to ammonium (NH \square ⁺) and nitrate (NO $_3$ ⁻) ions by the action of other soil microorganisms(44).

This natural process enhances the plant's nitrogen availability, promoting growth while reducing the dependence on synthetic nitrogen fertilizers. Reaction takes place under anaerobic or microaerophilic conditions (49).

$N_2+8H^++8e^-+16ATP \rightarrow 2NH_3+H_2+16ADP+16P$:

After analysing the huge data collected over many years about how Azospirillum helps plants grow by fixing nitrogen, it turns out that this bacterium is really crucial for boosting plant growth. Even in situations where Azospirillum's nitrogen-fixing role is not huge, the cumulative effect of nitrogen provided by this process, coupled with other mechanisms works together to help plants thrive (47).

Biological control agent

In order to augment food grain production and productivity in tandem with the escalating annual population growth there arises a necessity for the application of elevated doses of pest control agents. While this approach yields expeditious outcomes, its indiscriminate application, coupled with the persistent nature of these chemicals in the soil, engenders a decline in soil productivity (50). Simultaneously, it leads to water body pollution, posing hazards to both human health and the surrounding environment. Hence, there is a high need to shift from chemical method to biological method of pest control (51).

Azospirillum belongs to a bacterial cohort utilized not only as biological fertilizers but also as integral constituents in pesticide formulations. The integration of Azospirillum proves instrumental in mitigating reliance on excessive synthetic chemical compounds, manifesting as biofertilizers for plant nutrient provision and bioprotectants for soil-borne pathogen control (52). Various mechanisms employed by Azospirillum to mitigate pathogenic damage have been elucidated like encompassing environmental competition, pathogen displacement, suppression of seed

growth and develor	oment			
phytohormones	Species producing the particular phytohormone	Effect of hormone on plant	Evidence	References
Auxin (specifically IAA)	Azospirillum brasilense Azospirillum lipoferum Azospirillum amazonense Azospirillum halo praeferens Azospirillum irakense	Phytohormones within this category escalate the xylem and root development, regulate processes associated with vegetative growth, tropism, flowering, and fruiting in plants. Furthermore, they exert influence on photosynthesis, pigment synthesis, the biosynthesis of diverse metabolites, and confer resistance against biotic stress factors.	IAA is produced by majority of Azospirillum strains in vitro. In numerous instances, mutants exhibiting reduced IAA synthesis were found to be less efficacious when juxtaposed with their wild-type parental strains. In the plants inoculated with different strains, elevated level of IAA was observed. Mutants characterized by an overproduction of IAA demonstrated a more potent influence on the plant.	(26,27,28,29)
Gibberellins(GA)	Azospirillum lipoferum Azospirillum brasilense	GAs stimulates cellular division and elongation processes and plays a crucial role in breaking dormancy. Within the seed embryo, GAs serve as signalling molecules, inducing the synthesis of the enzyme	 In vitro Azospirillum spp. metabolize and synthesize GAs. The introduction of Azospirillum strains exhibiting GA production capabilities to gibberellic acid (GA)-deficient mutant dwarf rice results in the reversal of the dwarf phenotype. 	(28,29,30,31)

Goel et al.

alpha-amylase

Cytokinins	Azospirillum amazonense Azospirillum halo praeferens	in the aleurone cells, thereby initiating starch hydrolysis. The resultant glucose serves as an energy source for the seed embryo. GAs also contributes to elevated transcription levels of the gene responsible for coding the alpha-amylase enzyme, thereby promoting the synthesis of this enzymatic catalyst. Cytokinins participate in cellular enlargement and division processes, as well as the morphogenesis	In vitro Azospirillum produce cytokinins.	(28,29,32,33)
Abscisicacid (ABA)	Azospirillum lipoferum	of shoots and roots, while also influencing senescence. ABA plays a crucial role in	This compound was identified in vitro	(28,29,34,35)
		mediating responses to environmental stresses.	across various strains. The interplay between gibberellic acid (GA) and abscisic acid (ABA) contributes to the alleviation of water stress in plants.	
Ethylene	A.brasilense	Ethylene participates in	In the culture filtrate of <i>A. brasilense</i>	(28,29,36,37,38)

Staple Crops To Inoculation With Azospirillum

		breaking dormancy of the seeds. Its primary impact lies in the induction of senescence in the plant.	Ethylene was found	
Polyamines	A. brasilense	Polyamines are synthesized by pathways which are highly regulated in the cells and regulate the growth. They are important compound for reproductive events like pollen development and fertilization.	 Invitro. These compounds werefound. Applications of cadaverine mitigatedosmotic stress in the rice. 	(28,29,39,40)

germination in parasitic weeds(53), overall augmentation of plant resistance to pathogen infections, and potential inhibition of fungal growth through synthesis of microbial bioactive substances with toxic properties (54).

The colonization of plant roots by Azospirillum facilitates the biosynthesis of amino acids, organic acids, sugars, and various aromatic compounds. These bioactive metabolites serve as protective agents, imparting resistance to plants against root pathogens(55). Siderophore production is another strategy used by Azospirillum to inhibit growth of pathogenic microorganism(56). Siderophores produced by Azospirillum bind tightly to iron, make it soluble and available for bacteria. The siderophores iron complex is transported back into the Azosperillium and is utilized for various metabolic processes. This reduces the availability of iron for other harmful pathogenic microorganisms. Since pathogens cannot compete for the iron sequestered by Azospirillum 'ssiderophores, their growth is inhibited(53,57). Azospirillum triggers induced Systemic Resistance in plants which primes the plant's immune system, enhancing its capacity to mount rapid and robust responses against subsequent pathogen challenges. Induced Systemic Resistance fortifies the plant's defence mechanisms systemically, providing broad-spectrum protection against diverse pathogens(58). Together, all these mechanisms make Azospirillum an effective biological control agent, enhancing plant growth, boosting resistance to disease, and improving overall plant health (59).

Mitigation of stresses

Plant stress is a state wherein the plant undergoes suboptimal or impoverished conditions, adversely impacting factors such as plant growth, crop productivity, reproductive capability or even leading to plant death if the stress surpass the tolerance limit of the plant (60). A prevalent rationale for the impact of *Azospirillum* on plant growth involves the mitigation of environmental stressors by the bacteria hence facilitating the

plant a more conducive growth environment within an otherwise constraining setting (61). In certain instances, inoculation facilitates plant growth in soils that conventionally impose growth limitations (62). Environmental stressors are of various kind, which include stress due to drought (63), salinity (64), heavy metals and toxicity of other substances like humic substances (65).

Salinity emerges as a paramount environmental stressor, exerting harmful and deleterious effects on crop yield and quality globally (66). Around 20% of arable lands worldwide faces the challenges posed by salt stress and the salt-affected regions are continuously expanding, mainly due to shortage of irrigation water resources(67). Salt stress majorly affect the development and growth of plant (68). It heightened intracellular osmotic pressure, leading to the potentially toxic accrual of sodium. Analogous to other abiotic stressors, salt stress exerts multifaceted adverse effects on plant physiology, encompassing nutritional and hormonal imbalances, ion toxicity, oxidative and osmotic stress, and an elevated susceptibility to diseases (69). In similar manner, water stress also emerges as a major environmental stressor exerting substantial influence on global agricultural output, particularly in arid and semi-arid areas. Vegetation encounters water stress either due to limiting water supply at the root level or heightened transpiration rates (64). The root-cause of water stress lies in the deficiency of water, commonly known as drought conditions (70). Water which comprises around 80 to 90% of the biomass of herbaceous plants, serves as the pivotal molecular entity in all plant physiological processes, functioning as the primary medium for metabolite and nutrient transport (71). Drought causes reductions in plant water potential and turgor which hinder the seamless execution of standard physiological especially the photosynthetic capacity of the plant. The growth of the plant and their productivity are acutely diminished if the stress is prolonged (72).

Azospirillum species are known to play a key role in enhancing plant growth under salinity stress conditions through several physiological, biochemical. molecular responses that promote plant growth (73). Studies indicated that prevalent agricultural Azospirillum strains demonstrated resilience to elevated salinity levels, reaching up to 2%. The salt tolerance spectrum among species exhibited an ascending gradient from amazonense (minimal) to Α. halopraeferans (maximal), with the latter displaying tolerance exceeding 3% NaCl. equivalent to seawater salinity (74). Plants produce ethylene, a stress harmone under salt stress condition which inhibits the plant growth Azospirillum produces (75).1-aminocyclopropane-1-carboxylate deaminase which inhibits the production of ethylene by breaking down its precursor and maintaining growth and development(71). Salinity even disturbs the water potential between soil and roots making it difficult for plants to absorb water. Azospirillm by accumulation promoting the osmo-protectant like proline and glycine betaine helps in maintaining cellular turgor and enable roots to absorb water (76). Azospirillum inhibits the production of reactive oxygen species allowing plants to better cope

Inoculating the plant with Azospirillum under the conditions of water stress improves the growth of plant (as shown in Figure 2) (77). Various phytohormones produced by Azospirillum, specifically auxins, promote root growth. Increased root area allows plants to capacity(78). improve water uptake Exopolysaccharides produced by Azospirillum improves soil structure and water retention around the roots (79). Under water stress condition, Azospirillum alter the expression of stress related genes which control various biochemical and physiological pathways that helps plant to deal with stressful conditions (80).

with other stress (74).

Part A in Figure 2 exhibits the mechanism adopted by the plants in response to drought stress. Drought stress affect the

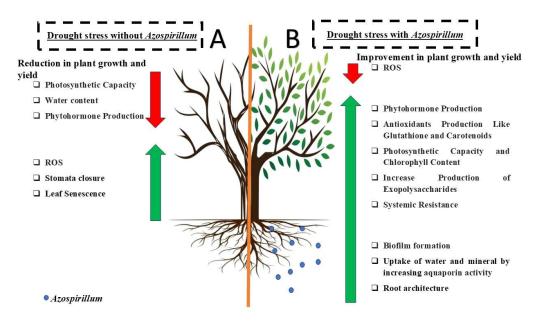


Fig. 2: Comparison of the effects of drought stress with and without Azospirillum in plants

plant physiologically and biologically. In stress condition, stomata closure takes place to reduce the water loss through transpiration (Fig. 2, part A). Phytohormone imbalance takes place followed by Reactive oxygen species (ROS) accumulation that causes oxidative stress and inhibit various metabolic pathway like protein synthesis. Root system development gets reduced which reduces the water content. Evapotranspiration (ET) decreases, and leaf senescence takes place. which reduce the yield of the crop. The role of Azospirillum in mitigating drought stress can be visualized in Figure 2, part B. Azospirillum producesphytohormones like auxin which promotes the development of longer and denser root system. This increases the surface area for the absorption of nutrient and water even from the deeper layers of soil where there are high chances of moisture availability during drought condition. Azospirillum influences expression aquaporin gene in roots of the plant. Proteins of these gene act as water channels, which facilitate efficient movement of water across the membrane of the cells. Exopolysaccharides (EPS) is also secreted by Azospirillum, whichis a sticky biofilm that surrounds the root hairs and helps in retaining moisture around the roots and reduce loss of water by evaporation. Azospirillum also produces certain antioxidant enzymes like glutathione and carotenoids, which decrease ROS and reduce oxidative stress.

Metal and metalloid ions constitute intrinsic components of Earth's different layer. Nonetheless, high concentrations of these elements can also induce toxicity in various life forms inhabiting the ecosystem, including microorganisms, flora, fauna, and human beings(81). Beyond their inherent occurrence in the environmental matrix, anthropogenic activities have significantly contributed to the release of metal and metalloid ions from their indigenous reservoirs, resulting in the contamination of terrestrial soils, aquatic rivers, marine oceans, and the atmospheric milieu and cause adverse impact on plant

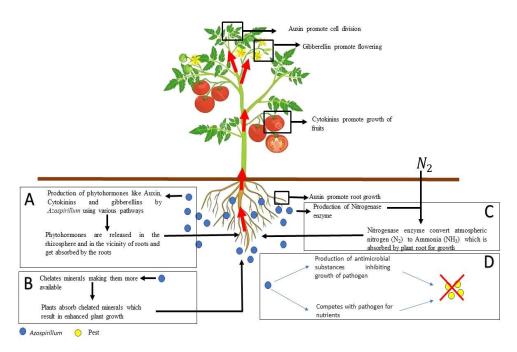


Fig. 3: Mechanism of plant growth promotion by Azospirillum.

health(82). An alternative conceivable mechanism for enhancing plant vitality involves mitigating metal toxicity within polluted soils and mine tailings, where, under typical circumstances, plant growth is substantially impeded (78). Azospirillum accumulate and absorb these toxic metals reducing their bioavailability to plants, which mitigates the stress these metals cause to plant (75).

The mechanism by which Azospirillum helps in promoting plant growth are summarized in Figure 3. Azospirillum colonizes in rhizosphere in the soil around the the plant and produces of variousphytohormones like auxin, cytokinins and gibberellins using various biochemical pathways in the root vicinity. Plant roots absorb these phytohormones and stimulate plant growth like auxin promote root growth and cell division, gibberellins promote promote flowering and cytokinins development of root. Azspirillum releases organic acids and various enzymes that chelates minerals making the minerals more available. Plants absorb that chelated minerals which result in enhanced plant growth.Also.Azospirillum adhere to surface which lead to the formation of biofilm around the root surface, it then produces nitrogenase enzyme that convert atmospheric nitrogen to ammonia. Ammonia is absorbed by plant roots for growth. Azospirillum also acts as biological control agent by releasing certain antimicrobial compounds in soil that inhibit the growth of pathogens. Azospirillum even competes with pathogen for nutrients, which result in the reduction of pathogenic leads impact that to healthier plants. Azospirillum as biological control agent.

Interaction of Azospirillum spp. with staple crops

Staple crops forms the backbone of diets for a significant portion of population across the globe. They have high content of

Staple Crops To Inoculation With Azospirillum

carbohydrate, that fulfils the substantial portion of daily caloric intake. The most common staple crops include cereals like rice, wheat, sugarcane and maize, which together account for over 50% of the world's caloric consumption (83). Along with serving as a dietary staple, these crops provide livelihood to millions of farmers. *Azospirillum*, offers a promising approach to enhance growth, improve nutrient use efficiency, and ensure sustainable agricultural practices for these crops (84).

Rice (Oryza sativa)

Rice serves as a pivotal dietary staple for approximately 50% of the world's population, making it one of the most extensively cultivated cereal crop(85). On an annual basis, over 3 billion individuals incorporate more than 100 kilograms of rice into their diets (81). Rice cultivation faces notable constraints, mainly due to the limited availability of water resources, additionally, urban and industrial encroachment in regions like Asia, already grappling with scarce arable poses challenges (86.87). substantial financial investments required for the development of new rice-friendly lands further restrict the feasibility of acreage dedicated to rice-based agricultural systems in the foreseeable future (88).

Different species of Azospirillum exert diverse beneficial effects on rice plants. Their specific impact can vary according to various parameters such as strain used, application method, and various environmental factors (89). When used on rice, the bacterium Azospirillum brasilense increases the crop's productivity overall and lowers requirement for nitrogen (90). Inoculating A. brasilense increases the uptake of mineral ions (91). After inoculating rice plants with A. lipoferum, NH₄⁺ and PO₄⁻ absorption was also improved (92). The utilization of Azospirillum strain B510 within the rice agricultural framework provide resistance to pathogens and improve crop yield (93).

In a research study the productivity of rice was significantly increased after inoculation with *A. brasilense* strains Ab-V5

and Ab-V6, boasting a cellular concentration of 2 × 10⁸ cells mL⁻¹, which was administered across four discrete dosage levels (0, 100, 200 and 300 mL ha⁻¹) (94). Furthermore, the researchers explored four distinct application methodologies. encompassing seed inoculation, in-furrow delivery during sowing, soil-based spraying immediately after sowing, and foliar application at the initial stages of tillering. Notably, a consistent pattern of effectiveness was observed across the various inoculation protocols. The optimal response was, when plants were subjected to an inoculum volume of 200 mL ha⁻¹. This specific treatment resulted in a striking 10% augmentation in crop yield relative to the control group, which did not receive the A. brasilense inoculation (94).

Azospirillum isolates isolated from north Bengal paddy fields, namely Azospirillum Azospirillum brasilense, lipoferum. Azospirillum brasilense and Azospirillum halo praeferens, significantly enhance plant growth when used to inoculate "BRRI dhan-28" seeds. Rice seeds subjected to inoculation were germinated within a petri dish. The germinated rice seeds from both the inoculated and control groups were then transplanted into earthen pots filled with soil. Various plant growth parameters were meticulously assessed and juxtaposed with those of the control group. The outcomes revealed that all isolate inoculations led to a notable increase in rice seed germination percentage when contrasted with the control. Moreover, the application of Azospirillum as an inoculant demonstrated a statistically significant enhancement in plant height, leaf count per plant, dimensions of leaves (both length and breadth), as well as the fresh and dry weight per plant in the rice cultivation (95). Inoculating the root of rice with Azospirillum resulted in the significant increment in elongation of roots, surface area of roots, root dry matter and development of lateral roots (96,97).

Sugarcane (Saccharum officinarum)

Sugarcane stands as a pivotal global commercial crop, cultivated all around the

world. Functioning as the primary feedstock for white sugar, jaggery and khandsari, it further serves in mastication and the extraction of juice for beverage applications (98). The optimization of sugarcane crop vields not only bolsters agricultural productivity but also serves as a critical determinant in uplifting the economic well-being of participating farmers. One of the most important limiting factor for sugarcane growth is Nitrogen and chemical fertilizers are generally used to meet its demand (99). There are various drawbacks of using chemical fertilizers like they are expensive, detrimental to the environment and even contribute to global warming by greenhouse gasses emission(100). Nitrogen fertilizers add on a significant amount to total cost of the manufactured product requiring sugarcane as a raw product (101).

Azospirillum replace the need of adding N fertilizers by fixing nitrogen available in atmosphere (102). Azospirillum brasilense strain Az-V5 when tested on sugarcane variety 'RB86-7515,' protects the sugarcane plant from biotic and abiotic stress factors ultimately influencing the cell viability, root colonization and various other growth parameters including plant height, stalk diameter, tiller count, leaf characteristics and dry matter content in a positive manner (103). Inoculating Sugarcane plant with Azospirillum brasilense mitigate the drought stress and result in higher dry weight of shoot and root along with improved efficiency of water usage (104). Azospirillum spp. mitigates water stress tolerance under drought conditions, promoting improved root growth and nutrient uptake by improving root development (102).

Maize (Zea mays)

Maize has a pivotal role as a fundamental source of sustenance in numerous nations. In developed economies, it predominantly serves as a vital component of animal feed, while simultaneously fulfilling diverse roles within industrial and energy sectors (105). Maize plays a versatile and ever-evolving role within the broader

framework of worldwide agricultural and food systems, exerting a significant impact on aspects related to food security and nutritional aspects (106.107).

A. brasiliense inoculation significantly improved maize growth in terms of plant height and biomass accumulation. Maize yield was notably higher in inoculated plants when compared to non-inoculated controls (108). Azospirillum brasilense when inoculated with zinc enhance fungal root colonization with increment in crop yields, nutrient uptake, root development and grain vield in maize under savannah conditions suggesting a synergistic effect between the bacterium and the micronutrient (109). Inoculating maize with Azospirillum brasilense Ab-V5 cells enriched exopolysaccharides polyhydroxybutyrate significantly improved the plant growth and grain yield even under low nitrogen input. The enriched bioinoculant enhanced stress tolerance and plant-microbe interactions, reducing dependency chemical fertilizers (110).Azospirillum brasilense when inoculated in maize with different soil bioactivator, improved nutrient availability, microbial activity, increased maize yield and plant vigor. These findings suggest that integrating A. brasilense inoculation and bioactivators is a promising strategy for sustainable maize production, offering enhanced productivity and soil health benefits (111).

In a greenhouse-based experiment, cultivation of maize plants in pots filled with a mixture of vermiculite and perlite was done. These plants were subjected to various combinations of Azospirillum spp. with uniconazole treatments and were harvested after a 30-day period. The use of uniconazole resulted in a reduction in maize plant growth due to its inhibitory effect on gibberellin production. Multiple parameters assessed, including plant height, fresh weight, and dry weight, as well as the fresh weight of both roots and shoots(112). Additionally, a gibberellin content analysis in the roots using gas chromatography-mass spectrometry was also conducted. The plants treated with Azospirillum spp. exhibited significantly greater height, fresh weight, and dry weight compared to the control plants. For instance, the height of Azospirillum spp.treated plants reached 23.5 cm, while the control plants only reached 18.5 cm. The fresh weight of Azospirillum spp.treated plants was 5.2 g, in contrast to the 3.8 g recorded for the control plants. Likewise, the dry weight of Azospirillum spp.-treated plants was 0.8 q. while the control plants registered 0.6 g. The level of gibberellin in the roots of Azospirillum spp.treated plants measured 0.70 ng/g fresh weight, while it was undetectable (n.d.) in the roots of the control plants (112).

Wheat (Triticum)

Wheat holds a significant position among cereal grains worldwide, serving as a crucial element in agriculture, consumption patterns, and international trade (113). Wheat remains a primary source of sustenance for a considerable portion of the population(114). Multiple factors have jeopardized the long-term viabilitv traditional wheat cultivation systems, such as the deterioration of soil quality, limited water resources, labour and energy shortages, nutrient imbalances, reduced soil organic carbon levels, diverse persistent weed, pest populations, the proliferation of herbicide-resistant weed species, and emissions of greenhouse gases (115).

The relationship between Azospirillum and wheat is characterized by mutual benefits. Within this symbiotic partnership, wheat offers Azospirillum a carbon source and a living environment, while Azospirillum reciprocates by supplying the wheat plant with nitrogen and various advantageous substances. Numerous research studies have demonstrated that introducing Azospirillum into the wheat-growing environment leads to enhanced wheat growth and increased yield (114.115.116). Inoculating wheat with A. brasilense improve grain yield across multiple cultivars by increasing the accumulation of essential nutrients including nitrogen, phosphorus, and potassium (113). The

co-application of A. brasilense with R. pisi improve biomass, root development and grain yield under water deficit and partial root drying stress in wheat plant. The combined inoculation mitigates the harmful effect of water stress maintaining leaf water content and photosynthetic efficiency (117). Wheat inoculated with A. brasilense showed a 10.3% higher grain yield compared to non-inoculated plants, with greater root and shoot biomass nitroaen accumulation. Combining inoculation with a reduced Nitrogen application (50 kg N ha⁻¹) increased operating profit by 10.5%, demonstrating cost-effectiveness (118).

Conclusion

The bacterium Azospirillum, known for its ability to fix nitrogen and thrive independently, holds a significant position among rhizobacteria species due to its substantial contributions to plant growth. Its multifaceted growth-promoting mechanisms are intricately regulated. With a long history of use in agriculture, Azospirillum has been consistently applied to enhance productivity and overall plant development. The widespread adoption of Azospirillum inoculants in crop production has been well-documented and firmly established. Notably, these inoculants have demonstrated effectiveness in boosting grain yields across various staple crops. This microorganism demonstrates potential in enhancing the sequestration of various phytotoxins within plant roots, bearing implications not only for sustainable agriculture but also in ecological toxicology.

Despite considerable strides in research, important gaps persist, particularly in comprehensively understanding its genetic blueprint and molecular mechanisms. Addressing these gaps is crucial to broaden the scope of its potential applications. While existing studies highlight the potential of Azospirillum spp. to enhance plant growth and stress tolerance, there is a limited elucidation of the specific signalling pathways and genetic factors that modulate these responses across

diverse crop species. Additionally, influence of environmental factors, such as soil characteristics and climatic conditions, on the effectiveness of Azospirillum -plant associations remains inadequately explored. Addressing these gaps necessitates in-depth molecular and genetic studies that decipher the intricate signalling cascades regulatory networks involved in Azospirillum -mediated effects on different crop varieties. comprehensive Moreover. field trials incorporating varying environmental conditions are warranted to validate and optimize the efficacy of Azospirillum spp. in diverse agricultural settings, paving the way for more targeted and sustainable applications in crop production.

Acknowledgement

Authors of this article acknowledge their gratitude to Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh for their support and encouragement.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

- 1 Elías, J. M., Guerrero-Molina, M. F., Martínez-Zamora, M. G., Díaz-Ricci, J. C., & Pedraza, R. O. (2018). Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth promoting bacterium Azospirillum brasilense. *Plant Biology*, 20(3), 490-496.
- 2 Gureeva, M. V., & Gureev, A. P. (2023). Molecular mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors. *International Journal of Molecular Sciences*, 24(11), 9122.
- 3 Cruz-Hernández, M. A., Mendoza-Herrera, A., Bocanegra-García, V., & Rivera, G. (2022). Azospirillum spp. from plant growth-promoting bacteria to their use in bioremediation. *Microorganisms*, *10*(5), 1057.
- 4 Nawaz, A., Farooq, M., Nadeem, F., Siddique, K. H., & Lal, R. (2019). Rice-wheat

- cropping systems in South Asia: issues, options and opportunities. *Crop and Pasture Science*, 70(5), 395-427.
- 5 Vessal, S., Salehi-Sardoei, A., Fazeli-Nasab, B., Shafi, N., Shameem, N., & Parray, J. A. (2024). Azospirillum, a Free-Living Nitrogen-Fixing Bacterium: Smart Agriculture and Sustainable Exploitation. In *Progress in Soil Microbiome Research* (pp. 365-399). Cham: Springer Nature Switzerland.
- 6 Puente, M. L., Gualpa, J. L., Lopez, G. A., Molina, R. M., Carletti, S. M., & Cassán, F. D. (2018). The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. *Symbiosis*, 76, 41-49.
- 7 Costa-Gutierrez, S. B., Adler, C., Espinosa-Urgel, M., & de Cristóbal, R. E. (2022). Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants. *Applied Microbiology and Biotechnology*, 106(9), 3351-3367.
- 8 Brambilla, S., Stritzler, M., Soto, G., & Ayub, N. (2022). A synthesis of functional contributions of rhizobacteria to growth promotion in diverse crops. Rhizosphere 24: 100611.
- 9 Sivasakthivelan, P., Saranraj, P., Al-Tawaha, A. R. M., Amala, K., Al Tawaha, A. R., Thangadurai, D., & Alwedyan, M. (2021). Adaptation of Azospirillum to stress conditions: A review. Advances in Environmental Biology, 15(4), 1-6.
- 10 Batabyal, B. (2021). Azospirillum: Diversity, Distribution, and Biotechnology Applications. *International Journal of Pharmacy & Life Sciences*, *12*(1).
- 11 Salim, H. A., Kadhum, A. A., Ali, A. F., Saleh, U. N., Jassim, N. H., Hamad, A. R., & Hassan, A. F. (2021). Response of cucumber plants to PGPR bacteria (Azospirillum brasilense, Pseudomonas fluorescens and Bacillus megaterium) and bread yeast (Saccharomyces cerevisiae). Syst. Rev. Pharm, 12, 969-975.
- 12 Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant

- growth-promoting rhizobacteria on nutrient acquisition process. A review. *Biology and fertility of soils*, *51*, 403-415.
- 13 Santos, K. F. D. N., Moure, V. R., Hauer, V., Santos, A. R. S., Donatti, L., Galvão, C. W., & Steffens, M. B. R. (2017). Wheat colonization by an Azospirillum brasilense ammonium-excreting strain reveals upregulation of nitrogenase and superior plant growth promotion. *Plant and Soil, 415*, 245-255.
- 14 Fourneau, E., Pannier, M., Riah, W., Personeni, E., Morvan-Bertrand, A., Bodilis, J., & Pawlak, B. (2024). A "love match" score to compare root exudate attraction and feeding of the plant growth-promoting rhizobacteria Bacillus subtilis, Pseudomonas fluorescens, and *Azospirillum brasilense*. *Frontiers in Microbiology*, *15*, 1473099.
- 15 Checker, V. G., Kushwaha, H. R., Kumari, P., & Yadav, S. (2018). Role of phytohormones in plant defense: signaling and cross talk. *Molecular aspects of plant-pathogen interaction*, 159-184.
- 16 Wang, X., & Komatsu, S. (2022). The role of phytohormones in plant response to flooding. *International Journal of Molecular Sciences*, 23(12), 6383.
- 17 Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd_Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. *Frontiers in microbiology*, *8*, 2104.
- 18 de-Bashan, L. E., Mayali, X., Bebout, B. M., Weber, P. K., Detweiler, A. M., Hernandez, J. P., & Bashan, Y. (2016). Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). *Algal research*, 15, 179-186.
- 19 Fontana, C. A., Salazar, S. M., Bassi, D., Puglisi, E., Lovaisa, N., Toffoli, L. M., & Cocconcelli, P. S. (2018). Genome sequence of Azospirillum brasilense REC3, isolated from strawberry plants. *Genome Announcements*, 6(8), 10-1128.

- 20 Cecagno, R., Fritsch, T. E., & Schrank, I. S. (2015). The plant growth-promoting bacteria Azospirillum amazonense: genomic versatility and phytohormone pathway. *BioMed research international*, 2015, 898592. 21 Chibeba, A. M., de Fátima Guimarães, M., Brito, O. R., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2015). Co-inoculation of sovhean with Bradyrbizohium and
- M., Brito, O. R., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2015). Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. *American Journal of Plant Sciences*, *6*(10), 1641-1649.
- 22 Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular biology and evolution*, 33(7), 1870-1874.
- 23 Palacios, O. A., Choix, F. J., Bashan, Y., & de-Bashan, L. E. (2016). Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana—Azospirillum brasilense system under heterotrophic conditions. *Research in Microbiology*, 167(5), 367-379.
- 24 Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. *Journal of plant growth regulation*, *34*, 740-760.
- 25 Krause, K., Henke, C., Asiimwe, T., Ulbricht, A., Klemmer, S., Schachtschabel, D., & Kothe, E. (2015). Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza. *Applied and environmental microbiology*, 81(20), 7003-7011.
- 26 Chandler, J. W. (2016). Auxin response factors. *Plant, cell & environment*, 39(5), 1014-1028.
- 27 Lavy, M., & Estelle, M. (2016). Mechanisms of auxin signaling. *Development*, *143*(18), 3226-3229.
- 28 Castillo, P., Molina, R., Andrade, A., Vigliocco, A., Alemano, S., & Cassán, F. D. (2015). Phytohormones and other plant growth regulators produced by PGPR: the genus Azospirillum. Handbook for Azospirillum: Technical Issues and Protocols, 115-138.

- 29 Jawad, N., & Kamal, J. A. K. (2024). Biochemical and Molecular Identification of Azospirillum brasilense Bacteria and Evaluation of Their Efficiency in Producing Hormones, Dissolving Phosphorus, and Fixing Nitrogen. *Journal of Environmental & Earth Sciences*, 6(3), 92-103.
- 30 Takahashi, N., Yamaguchi, I., & Yamane, H. (2018). Gibberellins. In *Chemistry of plant hormones* (pp. 57-151). Routledge.
- 31 Hedden, P. (2020). The current status of research on gibberellin biosynthesis. *Plant and Cell Physiology*, *61*(11), 1832-1849.
- 32 Mok, M. C. (2019). Cytokinins and plant development—an overview. *Cytokinins*, 155-166.
- 33 Albrecht, T., & Argueso, C. T. (2017). Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth–defence trade-off. *Annals of botany*, *119*(5), 725-735.
- 34 Alazem, M., & Lin, N. S. (2017). Antiviral roles of abscisic acid in plants. *Frontiers in plant science*, *8*, 1760.
- 35 Chen, K., Li, G. J., Bressan, R. A., Song, C. P., Zhu, J. K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. *Journal of integrative plant biology*, 62(1), 25-54.
- 36 Singh, S. K., Kumar, S., Kashyap, P. L., Sendhil, R., & Gupta, O. P. (2023). Wheat. In *Trajectory of 75 years of Indian agriculture after independence* (pp. 137-162). Singapore: Springer Nature Singapore.
- 37 Tao, J. J., Chen, H. W., Ma, B., Zhang, W. K., Chen, S. Y., & Zhang, J. S. (2015). The role of ethylene in plants under salinity stress. *Frontiers in plant science*, *6*, 1059.
- 38 Binder, B. M. (2020). Ethylene signaling in plants. *Journal of Biological Chemistry*, 295(22), 7710-7725.
- 39 Rakesh, B., Sudheer, W. N., & Nagella, P. (2021). Role of polyamines in plant tissue culture: An overview. *Plant Cell, Tissue and Organ Culture (PCTOC)*, *145*, 487-506.
- 40 Berberich, T., Sagor, G. H. M., & Kusano, T. (2015). Polyamines in plant stress response. *Polyamines: A universal molecular*

- nexus for growth, survival, and specialized metabolism, 155-168.
- 41 Leghari, S. J., Wahocho, N. A., Laghari, G. M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K., & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. *Advances in Environmental Biology*, *10*(9), 209-219.
- 42 Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current progress in nitrogen fixing plants and microbiome research. *Plants*, *9*(1), 97.
- 43 Wang, X., Fan, J., Xing, Y., Xu, G., Wang, H., Deng, J., & Li, Z. (2019). The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. *Advances in agronomy*, *153*, 121-173.
- 44 Guo, K., Yang, J., Yu, N., Luo, L., & Wang, E. (2023). Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. *Plant communications*, *4*(2), 100499.
- 45 Suhameena, B., Devi, S., Gowri, R., & Kumar, S. D. (2020). Utilization of Azospirillum as a Biofertilizer—an overview. *International Journal of Pharmaceutical Sciences Review and Research*, 62(2), 141-145.
- 46 Tikhonova, E. N., Grouzdev, D. S., & Kravchenko, I. K. (2019). Azospirillum palustre sp. nov., a methylotrophic nitrogen-fixing species isolated from raised bog. *International Journal of Systematic and Evolutionary Microbiology*, 69(9), 2787-2793.
- 47 Moreno, M., De-Bashan, L. E., Hernandez, J. P., Lopez, B. R., & Bashan, Y. (2017). Success of long-term restoration of degraded arid land using native trees planted 11 years earlier. *Plant and soil*, *421*, 83-92.
- 48 Einsle, O., & Rees, D. C. (2020). Structural enzymology of nitrogenase enzymes. *Chemical reviews*, 120(12), 4969-5004.
- 49 Raffi, M. M., & Charyulu, P. B. B. N. (2021). Azospirillum -biofertilizer for sustainable cereal crop production: Current status. In *Recent developments in applied microbiology and biochemistry* (pp. 193-209). Academic Press.

- 50 O'Brien, P. A. (2017). Biological control of plant diseases. *Australasian Plant Pathology*, 46, 293-304.
- 51 Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: a review. *International journal of agriculture, environment and biotechnology*, 10(6), 675-680.
- 52 Amavizca, E., Bashan, Y., Ryu, C. M., Farag, M. A., Bebout, B. M., & de-Bashan, L. E. (2017). Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. *Scientific reports*, 7(1), 41310.
- 53 Niehus, R., Picot, A., Oliveira, N. M., Mitri, S., & Foster, K. R. (2017). The evolution of siderophore production as a competitive trait. *Evolution*, *71*(6), 1443-1455.
- 54 Anandham, R., Heo, J., Krishnamoorthy, R., SenthilKumar, M., Gopal, N. O., Kim, S. J., & Kwon, S. W. (2019). Azospirillum ramasamyi sp. nov., a novel diazotrophic bacterium isolated from fermented bovine products. *International journal of systematic and evolutionary microbiology*, 69(5), 1369-1375.
- 55 Arora, K., Sharma, S., & Monti, A. (2016). Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India. *International Journal of Phytoremediation*, 18(7), 704-709.
- 56 Pedraza, R. O. (2015). Siderophores production by Azospirillum: biological importance, assessing methods and biocontrol activity. In *Handbook for Azospirillum: Technical Issues and Protocols* (pp. 251-262). Cham: Springer International Publishing.
- 57 Cassán, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. *Journal of Plant Growth Regulation*, 33, 440-459.
- 58 Cerezini, P., Kuwano, B. H., dos Santos, M. B., Terassi, F., Hungria, M., & Nogueira, M. A. (2016). Strategies to promote

- early nodulation in soybean under drought. Field Crops Research, 196, 160-167.
- 59 Cassán, F., & Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. *Soil Biology and Biochemistry*, *103*, 117-130.
- 60 Mareri, L., Parrotta, L., & Cai, G. (2022). Environmental stress and plants. *International Journal of Molecular Sciences*, 23(10), 5416.
- 61 Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. *Nature reviews Molecular cell biology*, 23(10), 663-679.
- 62 Mosa, K. A., Ismail, A., Helmy, M., Mosa, K. A., Ismail, A., & Helmy, M. (2017). Introduction to plant stresses. *Plant Stress Tolerance: An Integrated Omics Approach*, 1-19.
- 63 Kaur, G., & Asthir, B. (2017). Molecular responses to drought stress in plants. *Biologiaplantarum*, *61*, 201-209.
- 64 Zou, M., Zhou, S., Zhou, Y., Jia, Z.,
- Guo, T., & Wang, J. (2021). Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China:
- A review. *Environmental Pollution*, 280, 116965.
- 65 Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V., & Ozturk, M. (2019). Heavy metal stress and responses in plants. *International journal of environmental science and technology*, 16, 1807-1828.
- 66 Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. *Environmental science and pollution research*, 22, 4056-4075.
- 67 Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants' response mechanisms to salinity stress. *Plants*, *12*(12), 2253.
- 68 Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. *Agronomy*, 7(1), 18.

- 69 Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. *International Journal of Molecular Sciences*, *22*(9), 4609.
- 70 Gago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., & Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. *Agricultural water management*, 153, 9-19.
- 71 Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X., & Qiu, L. (2019). Research progress and perspective on drought stress in legumes: A review. *International journal of molecular sciences*, 20(10), 2541.
- 72 Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. *Frontiers in chemistry*, *6*, 26.
- 73 Vacheron, J., Renoud, S., Muller, D., Babalola, O. O., & Prigent-Combaret, C. (2015). Alleviation of abiotic and biotic stresses in plants by Azospirillum. Handbook for Azospirillum: technical issues and protocols, 333-365.
- 74 El-Beltagi, H. S., Ahmad, I., Basit, A., Abd El-Lateef, H. M., Yasir, M., Tanveer Shah, S., & Zohaib Ikram, M. (2022). Effect of Azospirillum and azotobacter species on the performance of cherry tomato under different salinity levels. *GesundePflanzen*, 74(2), 487-499.
- 75 Chen, H., Bullock Jr, D. A., Alonso, J. M., & Stepanova, A. N. (2021). To fight or to grow: the balancing role of ethylene in plant abiotic stress responses. *Plants*, *11*(1), 33.
- 76 Leite, R. D. C., dos Santos, J. G., Silva, E. L., Alves, C. R., Hungria, M., Leite, R. D. C., & dos Santos, A. C. (2018). Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloabrizantha) with Azospirillum brasilense. *Crop and Pasture Science*, 70(1), 61-67.
- 77 Kaur, N., & Dey, P. (2023). Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications. *Research in microbiology*, 174(4), 104024.

- 78 Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. *Amb Express*, 8(1), 73.
- 79 Netrusov, A. I., Liyaskina, E. V., Kurgaeva, I. V., Liyaskina, A. U., Yang, G., & Revin, V. V. (2023). Exopolysaccharides Producing Bacteria: A Review. *Microorganisms*, *11*(6), 1541.
- 80 Espindula, E., Sperb, E. R., Mor, B., Pankievicz, V. C. S., Tuleski, T. R.,
- Tadra-Sfeir, M. Z., Bonato, P., Scheid, C., Merib, J., Souza, E. M., & Passaglia, L. M. P. (2023). Effects on gene expression during maize-Azospirillum interaction in the presence of a plant-specific inhibitor of indole-3-acetic acid production. *Genetics and molecular biology*, 46(3 Suppl 1), e20230100.
- 81 Ali, B., & Gill, R. A. (2022). Editorial: Heavy metal toxicity in plants: Recent insights on physiological and molecular aspects, volume II. *Frontiers in plant science*, *13*, 1016257.
- 82 Angulo-Bejarano, P. I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. *Plants (Basel, Switzerland)*, 10(4), 635.
- 83 Kreitzman, M., Toensmeier, E., Chan, K. M., Smukler, S., & Ramankutty, N. (2020). Perennial staple crops: Yields, distribution, and nutrition in the global food system. *Frontiers in Sustainable Food Systems*, *4*, 588988.
- 84 Andrade, J. F., Cassman, K. G., RattalinoEdreira, J. I., Agus, F., Bala, A., Deng, N., & Grassini, P. (2022). Impact of urbanization trends on production of key staple crops. *Ambio*, *51*(5), 1158-1167.
- 85 Shelley, I. J., Takahashi-Nosaka, M., Kano-Nakata, M., Haque, M. S., & Inukai, Y. (2016). Rice cultivation in Bangladesh: present scenario, problems, and prospects. *Journal of International Cooperation for Agricultural Development*, 14, 20-29.
- 86 Toolkiattiwong, P., Arunrat, N., & Sereenonchai, S. (2023). Environmental, human and ecotoxicological impacts of different rice cultivation systems in Northern

- Thailand. International Journal of Environmental Research and Public Health, 20(3), 2738.
- 87 Kumar, N., Chhokar, R. S., Meena, R. P., Kharub, A. S., Gill, S. C., Tripathi, S. C., & Singh, G. P. (2021). Challenges and opportunities in productivity and sustainability of rice cultivation system: a critical review in Indian perspective. *Cereal research communications*, 1-29.
- 88 Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice—wheat cropping system. *International Soil and Water Conservation Research*, *4*(1), 64-74.
- 89 Naher, K., Miwa, H., Okazaki, S., & Yasuda, M. (2018). Effects of different sources of nitrogen on endophytic colonization of rice plants by Azospirillum sp. B510. *Microbes and environments*, 33(3), 301-308.
- 90 GuimarÃ, V. F., Klein, J., & Ferreira, M. B. (2020). Promotion of rice growth and productivity as a result of seed inoculation with Azospirillum brasilense. *African Journal of Agricultural Research*, *16*(6), 765-776.
- 91 Yasuda, M., Dastogeer, K. M., Sarkodee-Addo, E., Tokiwa, C., Isawa, T., Shinozaki, S., & Okazaki, S. (2022). Impact of Azospirillum sp. B510 on the rhizosphere microbiome of rice under field conditions. *Agronomy*, 12(6), 1367.
- 92 Hahn, L., Sá, E. L. S. D., Osório, B. D., Machado, R. G., Damasceno, R. G., & Giongo, A. (2016). Rhizobial inoculation, alone or coinoculated with Azospirillum brasilense, promotes growth of wetland rice. *RevistaBrasileira de Ciência do Solo, 40*.
- 93 Thomas, J., Kim, H. R., Rahmatallah, Y., Wiggins, G., Yang, Q., Singh, R., & Mukherjee, A. (2019). RNA-seq reveals differentially expressed genes in rice (*Oryza sativa*) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. *PLoS One*, *14*(5), e0217309.
- 94 Buzo, F. D. S., Garé, L. M., Arf, O., Portugal, J. R., Meirelles, F. C., & Garcia, N. F. (2019). Interaction between thidiazuron and Azospirillum brasilense on yield

- characteristics and productivity of rice. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(4), 244-249.
- 95 Hossain, M., Jahan, I., Akter, S., Rahman, N., & Rahman, B. (2015). Isolation and identification of Azospirillum isolates from different paddy fields of North Bengal. *Indian Journal of Research in Pharmacy and Biotechnology*, *3*(1), 74-80.
- 96 Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C. L. N., & Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. *Biology and Fertility of Soils*, *56*, 461-479.
- 97 Zhang, J., Hussain, S., Zhao, F., Zhu, L., Cao, X., Yu, S., & Jin, Q. (2018). Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere. *Journal of soils and sediments*, 18, 1453-1465.
- 98 Upreti, P., & Singh, A. (2017). An economic analysis of sugarcane cultivation and its productivity in major sugar producing states of Uttar Pradesh and Maharashtra. *Economic Affairs*, 62(4), 711-718.
- 99 Viswanathan, R. (2021). Sustainable sugarcane cultivation in India through threats of red rot by varietal management. *Sugar Tech*, 23(2), 239-253.
- 100 Jamil, M., Ahmed, R., & Sajjad, H. (2018). Land suitability assessment for sugarcane cultivation in Bijnor district, India using geographic information system and fuzzy analytical hierarchy process. *GeoJournal*, *83*, 595-611.
- 101 Som-Ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., & Immitzer, M. (2021). Remote sensing applications in sugarcane cultivation: A review. *Remote sensing*, *13*(20), 4040.
- 102 Scudeletti, D., Crusciol, C. A. C., Momesso, L., Bossolani, J. W., Moretti, L. G., De Oliveira, E. F., & Hungria, M. (2023). Inoculation with Azospirillum brasilense as a strategy to enhance sugarcane biomass production and bioenergy potential. *European Journal of Agronomy*, 144, 126749.

- 103 da Silva Viana, R., de Almeida Moreira, B. R., Lisboa, L. A. M., Junior, R. S., Nogueira, T. A. R., de Figueiredo, P. A. M., & Ramos, S. B. (2020). Morphological changes in sugarcane crop induced by the plant growth-promoting bacterium Azospirillum brasilense. *Sugar Tech*, *22*, 241-249.
- 104 Li, A. (2024). Role of Diazotrophic Bacteria in Promoting Sugarcane Growth and Yield. *Field Crop*, 7.
- 105 Hou, P., Liu, Y., Liu, W., Liu, G., Xie, R., Wang, K., & Li, S. (2020). How to increase maize production without extra nitrogen input. *Resources, Conservation and Recycling*, *160*, 104913.
- 106 Pickson, R. B., Gui, P., Chen, A., & Boateng, E. (2022). Empirical analysis of rice and maize production under climate change in China. *Environmental Science and Pollution Research*, 29(46), 70242-70261.
- 107 Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global maize production, consumption and trade: trends and R& D implications. *Food security*, *14*(5), 1295-1319.
- 108 Oliveira, I. J., Fontes, J. R. A., Pereira, B. F. F., & Muniz, A. W. (2018). Inoculation with Azospirillum brasiliense increases maize yield. *Chemical and Biological Technologies in Agriculture*, *5*, 1-9.
- 109 Silva, P. S. T., Cassiolato, A. M. R., Galindo, F. S., Jalal, A., Nogueira, T. A. R., Oliveira, C. E. D. S., & Filho, M. C. M. T. (2022). Azospirillum brasilense and zinc rates effect on fungal root colonization and yield of wheat-maize in tropical savannah conditions. *Plants*, *11*(22), 3154.
- 110 Oliveira, A. L., Santos, O. J., Marcelino, P. R., Milani, K. M., Zuluaga, M. Y., Zucareli, C., & Gonçalves, L. S. (2017). Maize inoculation with Azospirillum brasilense Ab-V5 cells enriched with exopolysaccharides and polyhydroxybutyrate results in high productivity under low N fertilizer input. *Frontiers in microbiology*, *8*, 1873.
- 111 Lerner, A. W., Guimarães, V. F., Brito, T. S., Röske, V. M., Cecatto Junior, R., Silva,

- A. S. L., & Weizenmann, J. C. (2021). Inoculation methods of Azospirillum brasilense associated to the application of soil bioactivator in the maize crop.
- 112 Revolti, L. T. M., Caprio, C. H., Mingotte, F. L. C., & Môro, G. V. (2018). Azospirillum spp. potential for maize growth and yield. *African Journal of Biotechnology*, 17(18), 574-585.
- 113 Singh, A., & Roychoudhury, A. (2023). Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. *Plant Cell Reports*, *42*(6), 961-974.
- 114 Hazard, B., Trafford, K., Lovegrove, A., Griffiths, S., Uauy, C., & Shewry, P. (2020). Strategies to improve wheat for human health. *Nature Food*, *1*(8), 475-480.'
- 115 Dhanda, S., Yadav, A., Yadav, D. B., & Chauhan, B. S. (2022). Emerging issues and potential opportunities in the rice—wheat cropping system of North-Western India. *Frontiers in Plant Science*, *13*, 832683.
- 116 Alhammad, B. A., Zaheer, M. S., Ali, H. H., Hameed, A., Ghanem, K. Z., & Seleiman, M. F. (2023). Effect of Co-Application of Azospirillum brasilense and Rhizobium pisi on Wheat Performance and Soil Nutrient Status under Deficit and Partial Root Drying Stress. Plants (Basel, Switzerland), 12(17), 3141.
- 117 Boleta, E. H. M., Shintate Galindo, F., Jalal, A., Santini, J. M. K., Rodrigues, W. L., Lima, B. H. D., & Teixeira Filho, M. C. M. (2020). Inoculation with growth-promoting bacteria Azospirillum brasilense and its effects on productivity and nutritional accumulation of wheat cultivars. *Frontiers in sustainable food systems*, *4*, 607262.
- 118 Galindo, F. S., Pagliari, P. H., Fernandes, G. C., Rodrigues, W. L., Boleta, E. H. M., Jalal, A., & Teixeira Filho, M. C. M. (2022). Improving sustainable field-grown wheat production with Azospirillum brasilense under tropical conditions: a potential tool for improving nitrogen management. Frontiers in Environmental Science, 10, 821628.