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Abstract

Azospirillum, a genus of plant
growth-promoting rhizobacteria, has garnered
increasing attention for its pivotal role in
sustainable agriculture. It has the capability to
increase yield in many crops of agronomic
importance especially staple crops by various
mechanisms. This review explores the diverse
potential of Azospirilum spp. in farming,
examining how different crops respond to
these bacteria. A key focus of this review is
Azospirillum 's ability to convert atmospheric
nitrogen into bioavailable nitrogen for plant
which boosts soil nutrients and helps plants
grow better. Besides nitrogen fixation, the
paper discusses many other benefits linked to
Azospirillum spp., such as phytohormones
production for plant growth promotion,
enhancing plant stress tolerance, and
ultimately helping farming stay sustainable
and strong. This review thoroughly
investigates the effect of Azospirillum
inoculation on staple crops including wheat,
maize, rice and sugarcane. It explores the
complex relationships these crops have
developed with Azospirillum spp., uncovering
numerous advantages of these interactions.

Keywords: Azospirillum, plant
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Introduction

The agricultural sector holds pivotal
significance in enhancing food accessibility
and attaining food security. Agriculture is a
high-risk sector, with outcomes predominantly
influenced by environmental conditions (1).
Crops are frequently subjected to variety of
stressors, including drought conditions,

pathogenic microbial infections, cultivation in
saline soils, or exposure to soils contaminated
with hydrocarbons, heavy metals, pesticides,
radioactive substances, or perchlorates(2).
The rapid growth in the global population
necessitates enhanced agricultural output and
the advancement of food quality to meet
fundamental requirements. Despite
consensus regarding the anticipated surge in
global food demand in forthcoming decades,
uncertainties persist regarding agriculture's
ability to meet this demand through expanded
food production (3).

Conventional agricultural methods,
encompassing the use of chemical fertilizers
and pesticides, serve to safeguard plants from
pathogens, consequently enhancing yield, but
the chemical constituents within these
agricultural substances pose significant
environmental hazards, leading to pollution of
soil, air, and water resources (1,3).

Current situation demands for a
sustainable and organic approach to boost
agricultural  production. Employing plant
growth promoting microorganisms (PGPM)
that promote plant growth is among the most
promising approaches to tackle the crisis (4).
These microbes play a vital role in organic
matter decomposition, contributing to the
production of humus and significantly
impacting soil quality and structure. Their
involvement extends to preserving biological
equilibrium, facilitating nutrient recycling
between soil and roots. Additionally, they
mitigate surface erosion losses, and also
regulate soil pH, maintain mineral and nutrient
balance, and enhance soil fertility (5).

The utilization of PGPM belonging
mainly to the genera like Pseudomonas,
Agrobacterium or Azospirillum showcases
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significant potential in enhancing plant growth
and performance across various species(6). For
instance, Acinetobacter sp. RG30 and
Pseudomonas putida GN04 exhibit remarkable
effects on Corn (Zea mays), demonstrating
increased tolerance to copper, elevated
chlorophyll content, and heightened copper
concentration in  tissues (7), Similarly,
Agrobacterium sp. 10C2 influences Phaseolus
vulgaris positively by stimulating nodule
formation, boosting plant biomass, and enriching
the content of phosphorus, polyphenols, and
flavonoids in grains, alongside inducing changes
in the microbial community structure (8).

Azospirillum, recognized as a key
genus among PGPR, exhibits the capability to
inhabit the roots of numerous plant species,
thereby fostering their growth through different
pathways including synthesis of metabolites like
plant hormones, its utility as biofertilizers, its
capacity to enhance plant stress tolerance
against salinity and water stress. Staple crops,
such as rice, wheat, maize, and millets, form the
cornerstone of global food security(9). However,
their productivity is often limited by various biotic
and abiotic stresses, declining soil fertility, and
excessive use of chemical fertilizers. Integrating
Azospirillum inoculation offers a sustainable
alternative to address these challenges while
supporting environmentally friendly farming
practices (10, 11).

In this review, we had described the
role of Azospirillum in plant growth promotion
by production of phytohormones, biological
nitrogen fixation, biological control agent and
mitigation of different types of stress along with
a comprehensive overview of the effects of
Azospirillum on different staple crops.

Biology of Azospirillum

Microorganisms classified under the
genus Azospirillum are free-living plant
growth-promoting bacteria. They help in the
development of various plant species,
including those with significant agronomic and
ecological value(12). Azospirillum has multiple
mode of action. The prevailing hypothesis
regarding the mode of action of Azospirillum is
its role in promoting plant growth by production

of phytohormones, biological nitrogen fixation,
biological control agent and mitigation of
different types of stress (13). Azospirillum has
been shown to enhance the agricultural
productivity of staple crops such as wheat,
maize, rice, and sugarcane. Additionally, it has
been applied successfully to chili peppers,
various fruit tree species, and cacti (14).

Each Azospirillum strain displays a
unique genomic configuration characterized
by a variable count of plasmids, typically
ranging from one to six. Members of the
Azospirillum genus showcase notable genome
size variations, exemplified by A. irakense
which has genome of 4800 kb, A. lipoferum
has 9600 kb and A. brasiense has
approximately 7000 kb(6). It is noteworthy that
mega plasmids emerge as a distinctive genetic
hallmark, some of which exhibit linear
conformations. The widespread presence of
these mega plasmids represents a prominent
and enduring characteristic, constituting one of
the principal genomic attributes historically
documented within the Azospirillum genus.
The count of mega plasmid replicons exhibits
species-specific disparities, typically spanning
from 7 to 8, and, in some instances, expanding
to encompass up to 10 such genetic entities.
These plasmids exhibit consistent presence in
Azospirillum strains, existing as solitary copies
within individual cells (12).Beyond the plasmid,
the occurrence of Mini chromosomes has
been duly recorded, for instance, the genome
of A. brasilense has multiple chromosomes
having replicons of 600 kb, 1000 kb, and 1700
kb in size, with the presence of additional 2500
kb chromosome(9).

Azospirillum role in plant
promotion
Production of Phytohormones
Flora necessitates luminosity, aqueous
sustenance, oxygenation, minerals, and
assorted nutrients to facilitate  their
physiological expansion and maturation. In
addition to these basic needs, they also rely on
specific organic compounds known as
phytohormones to start, regulate, and control
their growth processes (15). Phytohormones,

growth
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or plant hormones, are endogenously occurring
organic compounds found in trace amounts,
exerting their effects locally or remotely on the
plant. = Demonstrating  varied  chemical
properties and unique structural configurations,
these chemical mediators influence holistic
plant growth and development via diverse
biochemical pathways (16). These growth
modulators coordinate the plant's responses
simultaneously according to biotic and abiotic
stressors. These phytohormones induce
alterations in the metabolism as well as
morphology of the plant, resulting in enhanced
mineral and water uptake, thereby fostering the
development of larger and healthier plants(17).

Azospirillum spp. are widely known for
their ability to produce various phytohormones
like Indole-3-acetic acid, Gibberellins, abscisic
acid, Polyamines, Cytokinins and
Ethylene(18). Various phytohormones and
growth regulators such as putrescine,
spermine, spermidine, and cadaverine, were
found in the culture supernatant of different
strains of Azospirillum (19). Most strains of
Azospirillum, when subjected to fermentation
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for inoculant preparation, demonstrate the
capacity to biosynthesize a spectrum of growth
regulators at concentrations sufficient to
instigate morphological and physiological
changes in emerging seed tissues (20).

The mechanisms by which
Azospirillum promotes plant growth through
the production of phytohormones, are diverse
and multifaceted (21); like IAA in Azosperillium
is known to be biosynthesised by three
mechanisms which are related to tryptophan
metabolism (Fig. 1); namely, formation via
indole-3-pyruvic acid (IPyA) and
indole-3-acetaldehyde; tryptophan
conversion to indole-3-acetaldoxyme and
indole-3-acetonitrile (IAN); and via
indole-3-acetamide formation. The exclusion
of tryptophan from the Azosperillium culture
significantly reduces indole-3-acetic acid
production by the microbial population in the
culture (22,23). Conversely, supplementation
with exogenous tryptophan enhance the
biosynthesis. Gibberellins are synthesized by
the terpenoid pathway(20,24). Table 1 shows
different  phytohormones produced by

Indole-3-

Fig. 1: Biosynthesis of Indole-3-acetic acid in Azospirillum by tryptophan metabolism - formation
via indole-3-pyruvic acid (IPyA) and indole-3-acetaldehyde; tryptophan conversion to
indole-3-acetaldoxyme and indole-3-acetonitrile (IAN) and via indole-3-acetamide formation(25).
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Azospirillum species along with their effect on
growth and development of plants.

Nitrogen fixation

Nitrogen is regarded as the limiting
factor for plant growth and development despite
it is present abundantly in atmosphere. Nitrogen
holds a prominent position within the plant
metabolic framework, as it is integrally involved
in crucial physiological processes, particularly
those associated with protein synthesis(41).
Therefore, nitrogen application is essential to
enhance crop production. Nitrogen exerts a dual
influence by not only increasing the crop yield
but by enhancing the quality of food. Increment
in the rate of nitrogen cause increment in
photosynthetic processes, area of leaf and net
assimilation rate (42). Many crops are incapable
to utilize the freely available nitrogen present in
the atmosphere and necessitates synthetic
nitrogen fertilizers which contributes in global
warming and various types of pollutions in the
atmosphere (43). Nitrogen fixing bacteria has a
crucial role in the conversion of atmospheric
nitrogen into bioavailable form used by
plants(44). Azospirillum spp. stands out as a
highly proficient nitrogen fixation agent in
agricultural field, particularly under optimal
conditions for biological nitrogen fixation(45).
Around 18 percent nitrogen of the plants are
derived by biological nitrogen fixation(46).
Numerous investigations on Azospirillum
inoculation consistently underscore nitrogen
fixation as the primary mechanism by which
Azospirillum favours plant growth, either in a
free-living state or in symbiotic association with
plants(41,43). Around 50 percent, of the nitrogen
content in crops such as sugarcane, paspalum
notatum and panicum maximum, could be
sourced from  symbiotic  nitrogen-fixing
microorganisms, mainly Azospirillum (45,47).

In Azospirillum, enzyme nitrogenase
mediates nitrogen fixation(48). Nitrogenase
facilitates the reduction of atmospheric
nitrogen (N[1) to ammonia (NH[1). Ammonia is
then released in the rhizosphere, where plants
can directly use it or can be converted to
ammonium (NH(1* ) and nitrate (NOs - ) ions
by the action of other soil microorganisms(44).

This natural process enhances the plant's
nitrogen availability, promoting growth while
reducing the dependence on synthetic
nitrogen fertilizers. Reaction takes place
under anaerobic or microaerophilic conditions
(49).

N,+8H"+8e +16 ATP—2NH;+H,+16 ADP+16P
i

After analysing the huge data
collected over many years about how
Azospirillum helps plants grow by fixing
nitrogen, it turns out that this bacterium is
really crucial for boosting plant growth. Even
in situations where Azospirillum'’s
nitrogen-fixing role is not huge, the cumulative
effect of nitrogen provided by this process,
coupled with other mechanisms works
together to help plants thrive (47).

Biological control agent

In order to augment food grain
production and productivity in tandem with the
escalating annual population growth there
arises a necessity for the application of
elevated doses of pest control agents. While
this approach yields expeditious outcomes, its
indiscriminate application, coupled with the
persistent nature of these chemicals in the
soil, engenders a decline in soil productivity
(50). Simultaneously, it leads to water body
pollution, posing hazards to both human
health and the surrounding environment.
Hence, there is a high need to shift from
chemical method to biological method of pest
control (51).

Azospirillum belongs to a bacterial
cohort utilized not only as biological fertilizers
but also as integral constituents in pesticide
formulations. The integration of Azospirillum
proves instrumental in mitigating reliance on
excessive synthetic chemical compounds,
manifesting as biofertilizers for plant nutrient
provision and bioprotectants for soil-borne
pathogen control (52). Various mechanisms
employed by Azospirillum to mitigate
pathogenic damage have been elucidated like
encompassing environmental competition,
pathogen displacement, suppression of seed
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Table 1: Different phytohormones produced by Azospirillum species along with their use in plant
growth and development

halo praeferens

growth, tropism,
flowering, and
fruiting in plants.

phytohormones Species Effect of Evidence References
producing the hormone on
particular plant
phytohormone
Auxin Azospirillum Phytohormones e |AA is produced | (26,27,28,29)
(specifically IAA) brasilense within this by majority of
category Azospirillum strains
Azospirillum escalate the in vitro.
lipoferum xylemandroot ' ¢ |nnumerous
development, instances, mutants
Azospirillum regulate exhibiting reduced
amazonense processes IAA synthesis were
associated with | found to be less
Azospirillum vegetative efficacious when

juxtaposed with their
wild-type parental
strains.

role in breaking
dormancy.
Within the seed
embryo, GAs
serve as
signalling
molecules,
inducing the
synthesis of the
enzyme
alpha-amylase

Azospirillum
irakegse Furthermore, « Inthe plants
they exert inoculated with
influence on iferent strains,
photosynthesis, ' g|ayated level of IAA
pigment was observed.
synthesis, the
’ . e Mutants
biosynthesis of .
. characterized by an
diverse .
. overproduction of IAA
metabolites, and
demonstrated a more
confer ;
. potent influence on
resistance the olant
against biotic plant.
stress factors.
Gibberellins(GA) Azospirillum GAs stimulates | o  [n vitro (28,29,30,31)
lipoferum cellular division = Azospirillum spp.
and elongation | metabolize and
Azospirillum processes and | synthesize GAs.
brasilense plays acrucial o The introduction

of Azospirillum
strains exhibiting GA
production
capabilities to
gibberellic acid
(GA)-deficient mutant
dwarf rice results in
the reversal of the
dwarf phenotype.
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in the aleurone
cells, thereby
initiating starch
hydrolysis. The
resultant
glucose serves
as an energy
source for the
seed embryo.
GAs also
contributes to
elevated
transcription
levels of the
gene
responsible for
coding the
alpha-amylase
enzyme, thereby
promoting the
synthesis of this
enzymatic
catalyst.

Cytokinins

Azospirillum
amazonense

Azospirillum
halo praeferens

Cytokinins
participate in
cellular
enlargement and
division
processes, as
well as the
morphogenesis
of shoots and
roots, while also

In vitro Azospirillum
produce cytokinins.

(28,29,32,33)

participates in

influencing
senescence.
Abscisicacid Azospirillum ABA plays a e This compound (28,29,34,35)
(ABA) lipoferum crucial role in was identified in vitro
mediating across various
responses to strains.
environmental ° The interplay
stresses. between gibberellic
acid (GA) and
abscisic acid (ABA)
contributes to the
alleviation of water
stress in plants.
Ethylene A.brasilense Ethylene In the culture filtrate | (28,29,36,37,38)

of A. brasilense
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breaking
dormancy of the
seeds. Its
primary impact
lies in the
induction of
senescence in
the plant.

Polyamines are | ¢ Invitro. These
synthesized by | compounds
pathways which | werefound.

are highly e Applications of
regulated in the | ~53daverine

cells and mitigatedosmotic

regulate the stress in the rice.
growth. They are

important
compound for
reproductive
events like
pollen
development
and fertilization.

Ethylene was found

Polyamines A. brasilense (28,29,39,40)

germination in parasitic weeds(53), overall inhibited(53,57). Azospirillum triggers induced

augmentation of plant resistance to pathogen
infections, and potential inhibition of fungal
growth through synthesis of microbial
bioactive substances with toxic properties
(54).

The colonization of plant roots by
Azospirillum facilitates the biosynthesis of
amino acids, organic acids, sugars, and
various aromatic compounds. These bioactive
metabolites serve as protective agents,
imparting resistance to plants against root
pathogens(55).  Siderophore production is
another strategy used by Azospirillum to
inhibit the growth of pathogenic
microorganism(56). Siderophores produced
by Azospirillum bind tightly to iron, make it
soluble and available for bacteria. The
siderophores iron complex is transported back
into the Azosperillium and is utilized for
various metabolic processes. This reduces
the availability of iron for other harmful
pathogenic microorganisms. Since pathogens
cannot compete for the iron sequestered by
Azospirillum ’ssiderophores, their growth is

Systemic Resistance in plants which primes
the plant's immune system, enhancing its
capacity to mount rapid and robust responses
against subsequent pathogen challenges.
Induced Systemic Resistance fortifies the
plant's defence mechanisms systemically,
providing broad-spectrum protection against
diverse pathogens(58). Together, all these
mechanisms make Azospirillum an effective
biological control agent, enhancing plant
growth, boosting resistance to disease, and
improving overall plant health (59).

Mitigation of stresses

Plant stress is a state wherein the
plant undergoes suboptimal or impoverished
conditions, adversely impacting factors such
as plant growth, crop  productivity,
reproductive capability or even leading to
plant death if the stress surpass the tolerance
limit of the plant (60). A prevalent rationale for
the impact of Azospirillum on plant growth
involves the mitigation of environmental
stressors by the bacteria hence facilitating the
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plant a more conducive growth environment
within an otherwise constraining setting (61).
In certain instances, inoculation facilitates
plant growth in soils that conventionally
impose growth limitations (62). Environmental
stressors are of various kind, which include
stress due to drought (63), salinity (64), heavy
metals and toxicity of other substances like
humic substances (65).

Salinity emerges as a paramount
environmental stressor, exerting harmful and
deleterious effects on crop yield and quality
globally (66). Around 20% of arable lands
worldwide faces the challenges posed by salt
stress and the salt-affected regions are
continuously expanding, mainly due to
shortage of irrigation water resources(67).
Salt stress majorly affect the development and
growth of plant (68). It heightened intracellular
osmotic pressure, leading to the potentially
toxic accrual of sodium. Analogous to other
abiotic  stressors, salt stress exerts
multifaceted adverse effects on plant
physiology, encompassing nutritional and
hormonal imbalances, ion toxicity, oxidative
and osmotic stress, and an elevated
susceptibility to diseases (69). In similar
manner, water stress also emerges as a major
environmental stressor exerting substantial
influence on global agricultural output,
particularly in arid and semi-arid areas.
Vegetation encounters water stress either due
to limiting water supply at the root level or
heightened transpiration rates (64). The
root-cause of water stress lies in the
deficiency of water, commonly known as
drought conditions (70). Water which
comprises around 80 to 90% of the biomass
of herbaceous plants, serves as the pivotal
molecular entity in all plant physiological
processes, functioning as the primary medium
for metabolite and nutrient transport (71).
Drought causes reductions in plant water
potential and turgor which hinder the
seamless execution of standard physiological
functions especially the photosynthetic
capacity of the plant. The growth of the plant
and their productivity are acutely diminished if
the stress is prolonged (72).

Azospirillum species are known to
play a key role in enhancing plant growth
under salinity stress conditions through
several physiological, biochemical, and
molecular responses that promote plant
growth (73). Studies indicated that prevalent
agricultural Azospirillum strains demonstrated
resilience to elevated salinity levels, reaching
up to 2%. The salt tolerance spectrum among
species exhibited an ascending gradient from
A. amazonense (minimal) to A.
halopraeferans (maximal), with the latter
displaying tolerance exceeding 3% NaCl,
equivalent to seawater salinity (74). Plants
produce ethylene, a stress harmone under
salt stress condition which inhibits the plant
growth (75). Azospirillum produces
1-aminocyclopropane-1-carboxylate
deaminase which inhibits the production of
ethylene by breaking down its precursor and
maintaining growth and development(71).
Salinity even disturbs the water potential
between soil and roots making it difficult for
plants to absorb water. Azospirillm by
promoting the accumulation of
osmo-protectant like proline and glycine
betaine helps in maintaining cellular turgor
and enable roots to absorb water (76).
Azospirillum inhibits the production of reactive
oxygen species allowing plants to better cope
with other stress (74).

Inoculating the plant with Azospirillum
under the conditions of water stress improves
the growth of plant (as shown in Figure 2)
(77). Various phytohormones produced by
Azospirillum, specifically auxins, promote root
growth. Increased root area allows plants to
improve water uptake capacity(78).
Exopolysaccharides produced by Azospirillum
improves soil structure and water retention
around the roots (79). Under water stress
condition, Azospirillum alter the expression of
stress related genes which control various
biochemical and physiological pathways that
helps plant to deal with stressful conditions
(80).

Part A in Figure 2 exhibits the
mechanism adopted by the plants in response
to drought stress. Drought stress affect the

Staple Crops To Inoculation With Azospirillum



Current Trends in Biotechnology and Pharmacy

69

Vol. 19 (Supplementary Issue 3A), September 2025, ISSN 0973-8916 (Print)., 2230-7303 (Online)

10.5530/ctbp.2025.3s.4

Reduction in plant growth and
yield
O Photosynthetic Capacity

0 Water content

O Phytohormone Production

O ROS
O Stomata closure

O Leaf Senescence

Improvement in plant growth and yield

. 0 ROS

O Phytohormone Production

B l Drought stress with 4zospirillum

O Antioxidants Production Like
Glutathione and Carotenoids

O Photosynthetic Capacity and
Chlorophyll Content

O Increase Production of

Exopolysaccharides

O Systemic Resistance

® Azospirillum

O Biofilm formation

O Uptake of water and mineral by
increasing aquaporin activity

® O Root architecture

Fig. 2: Comparison of the effects of drought stress with and without Azospirillum in plants

plant physiologically and biologically. In stress
condition, stomata closure takes place to
reduce the water loss through transpiration
(Fig. 2, part A). Phytohormone imbalance
takes place followed by Reactive oxygen
species (ROS) accumulation that causes
oxidative stress and inhibit various metabolic
pathway like protein synthesis. Root system
development gets reduced which reduces the
water content. Evapotranspiration (ET)
decreases, and leaf senescence takes place,
which reduce the yield of the crop. The role of
Azospirillum in mitigating drought stress can
be visualized in Figure 2, part B.Azospirillum
producesphytohormones like auxin which
promotes the development of longer and
denser root system. This increases the
surface area for the absorption of nutrient and
water even from the deeper layers of soil
where there are high chances of moisture
availability  during drought  condition.
Azospirillum  influences  expression  of
aquaporin gene in roots of the plant. Proteins
of these gene act as water channels, which

facilitate efficient movement of water across
the membrane of the cells.
Exopolysaccharides (EPS) is also secreted by
Azospirillum, whichis a sticky biofilm that
surrounds the root hairs and helps in retaining
moisture around the roots and reduce loss of
water by evaporation. Azospirillum also
produces certain antioxidant enzymes like
glutathione and carotenoids, which decrease
ROS and reduce oxidative stress.

Metal and metalloid ions constitute
intrinsic components of Earth's different layer.
Nonetheless, high concentrations of these
elements can also induce toxicity in various
life forms inhabiting the ecosystem, including
microorganisms, flora, fauna, and human
beings(81). Beyond their inherent occurrence
in the environmental matrix, anthropogenic
activities have significantly contributed to the
release of metal and metalloid ions from their
indigenous reservoirs, resulting in the
contamination of terrestrial soils, aquatic
rivers, marine oceans, and the atmospheric
milieu and cause adverse impact on plant
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Fig. 3: Mechanism of plant growth promotion by Azospirillum.

health(82). ~ An alternative  conceivable
mechanism for enhancing plant vitality
involves mitigating metal toxicity within
polluted soils and mine tailings, where, under
typical circumstances, plant growth is
substantially impeded (78). Azospirillum
accumulate and absorb these toxic metals
reducing their bioavailability to plants, which
mitigates the stress these metals cause to
plant (75).

The mechanism by which
Azospirillum helps in promoting plant growth
are summarized in Figure 3. Azospirillum
colonizes in rhizosphere in the soil around the
roots of the plant and produces
variousphytohormones like auxin, cytokinins
and gibberellins using various biochemical
pathways in the root vicinity. Plant roots
absorb these phytohormones and stimulate
plant growth like auxin promote root growth
and cell division, gibberellins promote
flowering and cytokinins promote
development of root.Azspirillum releases

organic acids and various enzymes that
chelates minerals making the minerals more
available. Plants absorb that chelated
minerals which result in enhanced plant
growth.Also,Azospirillum adhere to root
surface which lead to the formation of biofilm
around the root surface, it then produces
nitrogenase enzyme that convert atmospheric
nitrogen to ammonia. Ammonia is absorbed
by plant roots for growth.Azospirillum also
acts as biological control agent by releasing
certain antimicrobial compounds in soil that
inhibit the growth of pathogens. Azospirillum
even competes with pathogen for nutrients,
which result in the reduction of pathogenic
impact that leads to healthier
plants.Azospirillum as biological control agent.

Interaction of Azospirillum spp. with staple
crops

Staple crops forms the backbone of
diets for a significant portion of population
across the globe. They have high content of
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carbohydrate, that fulfils the substantial
portion of daily caloric intake. The most
common staple crops include cereals like rice,
wheat, sugarcane and maize, which together
account for over 50% of the world's caloric
consumption (83). Along with serving as a
dietary staple, these crops provide livelihood
to millions of farmers. Azospirillum, offers a
promising approach to enhance growth,
improve nutrient use efficiency, and ensure
sustainable agricultural practices for these
crops (84).

Rice (Oryza sativa)

Rice serves as a pivotal dietary staple
for approximately 50% of the world's
population, making it one of the most
extensively cultivated cereal crop(85). On an
annual basis, over 3 billion individuals
incorporate more than 100 kilograms of rice
into their diets (81). Rice cultivation faces
notable constraints, mainly due to the limited
availability of water resources, additionally,
urban and industrial encroachment in regions
like Asia, already grappling with scarce arable
land, poses challenges (86,87). The
substantial financial investments required for
the development of new rice-friendly lands
further restrict the feasibility of acreage
dedicated to rice-based agricultural systems
in the foreseeable future (88).

Different species of Azospirillum exert
diverse beneficial effects on rice plants. Their
specific impact can vary according to various
parameters such as strain used, application
method, and various environmental factors
(89). When used on rice, the bacterium
Azospirillum brasilense increases the crop's
overall  productivity and lowers the
requirement for nitrogen (90). Inoculating A.
brasilense increases the uptake of mineral
ions (91). After inoculating rice plants with A.
lipoferum, NH,* and PO, absorption was also
improved (92). The utilization of Azospirillum
strain B510 within the rice agricultural
framework provide resistance to pathogens
and improve crop yield (93).

In a research study the productivity of
rice. was significantly increased after
inoculation with A. brasilense strains Ab-V5

and Ab-V6, boastin1g a cellular concentration
of 2 x 108 cells mL™', which was administered
across four discrete dosage levels (0, 100,
200 and 300 mL ha™) (94). Furthermore, the
researchers explored four distinct application
methodologies, encompassing seed
inoculation, in-furrow delivery during sowing,
soil-based spraying immediately after sowing,
and foliar application at the initial stages of
tillering. Notably, a consistent pattern of
effectiveness was observed across the
various inoculation protocols. The optimal
response was, when plants were subjected to
an inoculum volume of 200 mL ha”. This
specific treatment resulted in a striking 10%
augmentation in crop yield relative to the
control group, which did not receive the A.
brasilense inoculation (94).

Azospirillum isolates isolated from

north  Bengal paddy fields, namely
Azospirillum brasilense, Azospirillum
lipoferum,  Azospirillum  brasilense  and

Azospirillum halo praeferens, significantly
enhance plant growth when used to inoculate
“BRRI dhan-28" seeds. Rice seeds subjected
to inoculation were germinated within a petri
dish. The germinated rice seeds from both the
inoculated and control groups were then
transplanted into earthen pots filled with soil.
Various plant growth parameters were
meticulously assessed and juxtaposed with
those of the control group. The outcomes
revealed that all isolate inoculations led to a
notable increase in rice seed germination
percentage when contrasted with the control.
Moreover, the application of Azospirillum as
an inoculant demonstrated a statistically
significant enhancement in plant height, leaf
count per plant, dimensions of leaves (both
length and breadth), as well as the fresh and
dry weight per plant in the rice cultivation (95).
Inoculating the root of rice with Azospirillum
resulted in the significant increment in
elongation of roots, surface area of roots, root
dry matter and development of lateral roots
(96,97).

Sugarcane (Saccharum officinarum)
Sugarcane stands as a pivotal global
commercial crop, cultivated all around the
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world. Functioning as the primary feedstock
for white sugar, jaggery and khandsari, it
further serves in mastication and the
extraction of juice for beverage applications
(98). The optimization of sugarcane crop
yields not only bolsters agricultural
productivity but also serves as a critical
determinant in uplifting the economic
well-being of participating farmers. One of the
most important limiting factor for sugarcane
growth is Nitrogen and chemical fertilizers are
generally used to meet its demand (99). There
are various drawbacks of using chemical
fertilizers like they are expensive, detrimental
to the environment and even contribute to
global warming by greenhouse gasses
emission(100). Nitrogen fertilizers add on a
significant amount to total cost of the
manufactured product requiring sugarcane as
a raw product (101).

Azospirillum replace the need of
adding N fertilizers by fixing nitrogen available
in atmosphere (102). Azospirillum brasilense
strain Az-V5 when tested on sugarcane
variety RB86-7515,” protects the sugarcane
plant from biotic and abiotic stress factors
ultimately influencing the cell viability, root
colonization and various other growth
parameters including plant height, stalk
diameter, tiller count, leaf characteristics and
dry matter content in a positive manner (103).
Inoculating Sugarcane plant with Azospirillum
brasilense mitigate the drought stress and
result in higher dry weight of shoot and root
along with improved efficiency of water usage
(104). Azospirillum spp. mitigates water stress
tolerance under drought conditions, promoting
improved root growth and nutrient uptake by
improving root development (102).

Maize (Zea mays)

Maize has a pivotal role as a
fundamental source of sustenance in
numerous nations. In developed economies, it
predominantly serves as a vital component of
animal feed, while simultaneously fulfilling
diverse roles within industrial and energy
sectors (105). Maize plays a versatile and
ever-evolving role within the broader

framework of worldwide agricultural and food
systems, exerting a significant impact on
aspects related to food security and nutritional
aspects (106.107).

A. brasiliense inoculation significantly
improved maize growth in terms of plant
height and biomass accumulation. Maize yield
was notably higher in inoculated plants when
compared to non-inoculated controls (108).
Azospirillum brasilense when inoculated with
zinc enhance fungal root colonization with
increment in crop yields, nutrient uptake, root
development and grain yield in maize under
savannah conditions suggesting a synergistic
effect between the bacterium and the
micronutrient (109). Inoculating maize with
Azospirillum brasilense Ab-V5 cells enriched
with exopolysaccharides and
polyhydroxybutyrate significantly improved the
plant growth and grain yield even under low
nitrogen input. The enriched bioinoculant
enhanced stress tolerance and plant-microbe
interactions, reducing dependency on
chemical fertilizers (110).  Azospirillum
brasilense when inoculated in maize with
different soil bioactivator, improved nutrient
availability, microbial activity, increased maize
yield and plant vigor. These findings suggest
that integrating A. brasilense inoculation and
bioactivators is a promising strategy for
sustainable maize production, offering
enhanced productivity and soil health benefits
(111).

In a greenhouse-based experiment,
cultivation of maize plants in pots filled with a
mixture of vermiculite and perlite was done.
These plants were subjected to various
combinations of Azospirillum spp. with
uniconazole treatments and were harvested
after a 30-day period. The use of uniconazole
resulted in a reduction in maize plant growth
due to its inhibitory effect on gibberellin
production.  Multiple  parameters  were
assessed, including plant height, fresh weight,
and dry weight, as well as the fresh weight of
both roots and shoots(112). Additionally, a
gibberellin content analysis in the roots using
gas chromatography-mass spectrometry was
also conducted. The plants treated with
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Azospirillum  spp. exhibited significantly
greater height, fresh weight, and dry weight
compared to the control plants. For instance,
the height of Azospirillum spp.treated plants
reached 23.5 cm, while the control plants only
reached 18.5 cm. The fresh weight of
Azospirillum spp.treated plants was 5.2 g, in
contrast to the 3.8 g recorded for the control
plants. Likewise, the dry weight of
Azospirillum spp.-treated plants was 0.8 g,
while the control plants registered 0.6 g. The
level of gibberellin in the roots of Azospirillum
spp.treated plants measured 0.70 ng/g fresh
weight, while it was undetectable (n.d.) in the
roots of the control plants (112).

Wheat (Triticum)

Wheat holds a significant position
among cereal grains worldwide, serving as a
crucial element in agriculture, consumption
patterns, and international trade (113). Wheat
remains a primary source of sustenance for a
considerable  portion of the global
population(114).  Multiple  factors  have
jeopardized the long-term viability of
traditional wheat cultivation systems, such as
the deterioration of soil quality, limited water
resources, labour and energy shortages,
nutrient imbalances, reduced soil organic
carbon levels, diverse persistent weed, pest
populations, the proliferation of
herbicide-resistant weed species, and
emissions of greenhouse gases (115).

The relationship between Azospirillum
and wheat is characterized by mutual
benefits. Within this symbiotic partnership,
wheat offers Azospirillum a carbon source and
a living environment, while Azospirillum
reciprocates by supplying the wheat plant with
nitrogen and various advantageous
substances. Numerous research studies have
demonstrated that introducing Azospirillum
into the wheat-growing environment leads to
enhanced wheat growth and increased yield
(114,115,116). Inoculating wheat with A.
brasilense improve grain yield across multiple
cultivars by increasing the accumulation of
essential  nutrients  including  nitrogen,
phosphorus, and potassium (113). The

co-application of A. brasilense with R. pisi
improve biomass, root development and grain
yield under water deficit and partial root drying
stress in wheat plant. The combined
inoculation mitigates the harmful effect of
water stress maintaining leaf water content
and photosynthetic efficiency (117). Wheat
inoculated with A. brasilense showed a 10.3%
higher grain yield compared to non-inoculated
plants, with greater root and shoot biomass
and nitrogen accumulation. Combining
inoculation with a reduced Nitrogen
application (50 kg N ha ') increased
operating profit by 10.5%, demonstrating
cost-effectiveness (118).

Conclusion

The bacterium Azospirillum, known
for its ability to fix nitrogen and thrive
independently, holds a significant position
among rhizobacteria species due to its
substantial contributions to plant growth. Its
multifaceted growth-promoting mechanisms
are intricately regulated. With a long history of
use in agriculture, Azospirillum has been
consistently applied to enhance crop
productivity and overall plant development.
The widespread adoption of Azospirillum
inoculants in crop production has been
well-documented and firmly established.
Notably, these inoculants have demonstrated
effectiveness in boosting grain yields across
various staple crops. This microorganism
demonstrates potential in enhancing the
sequestration of various phytotoxins within
plant roots, bearing implications not only for
sustainable agriculture but also in ecological
toxicology.

Despite  considerable strides in
research, important gaps persist, particularly
in comprehensively understanding its genetic
blueprint and molecular mechanisms.
Addressing these gaps is crucial to broaden
the scope of its potential applications. While
existing studies highlight the potential of
Azospirillum spp. to enhance plant growth and
stress tolerance, there is a limited elucidation
of the specific signalling pathways and genetic
factors that modulate these responses across
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diverse crop species. Additionally, the
influence of environmental factors, such as
soil characteristics and climatic conditions, on
the effectiveness of Azospirillum -plant
associations remains inadequately explored.
Addressing these gaps necessitates in-depth
molecular and genetic studies that decipher
the intricate signalling cascades and
regulatory networks involved in Azospirillum
-mediated effects on different crop varieties.
Moreover, comprehensive field trials
incorporating varying environmental
conditions are warranted to validate and
optimize the efficacy of Azospirillum spp. in
diverse agricultural settings, paving the way
for more targeted and sustainable applications
in crop production.
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