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Abstract: 

The BCL (B-cell lymphoma) protein 
family is a diverse group of regulators critically 
involved in apoptosis, a tightly controlled pro-
cess crucial for maintaining tissue homeostasis. 
Dysregulation of apoptosis is a common feature 
in cancer, emphasizing the need to compre-
hend the intricate mechanisms underlying the 
function of the BCL family. This literature review 
offers a comprehensive exploration of the struc-
tural domain organization of the BCL family, 
shedding light on how these proteins orchestrate 
apoptosis. The family comprises anti-apoptotic 
proteins, pro-apoptotic effectors, and BH3(B-
CL-2 homology 3)-only proteins, each with dis-
tinct structural features and functional roles in 
apoptotic signaling pathways. Anti-apoptotic 
proteins like BCL-2 serve as guardians against 
cell death by preserving mitochondrial integri-
ty. Pro-apoptotic effectors, on the other hand, 
actively promote apoptosis by inducing mito-
chondrial outer membrane permeabilization. 
BH3-only proteins act as molecular switches, 
mediating the delicate balance between pro- 
and anti-apoptotic signals. This review delves 
into the specific role of BCL-2, a prominent fam-
ily member, in various cancers such as lung, 
breast, and prostate cancers. Highlighting its 
significance as a potential therapeutic target, 
the article underscores the importance of un-
derstanding the molecular nuances of BCL-2 in 

cancer progression. Moreover, recent advance-
ments in BCL-2 inhibitor development are dis-
cussed, showcasing their potential as targeted 
therapies for cancer treatment. These inhibitors 
represent a promising avenue for personalized 
cancer therapy, aiming to selectively induce 
apoptosis in cancer cells while sparing normal 
cells. The review emphasizes the importance of 
these inhibitors in addressing the specific chal-
lenges posed by BCL-2 dysregulation in diverse 
cancer types. By elucidating the structural and 
functional aspects of the BCL protein family, this 
literature review provides valuable insights into 
apoptotic signaling pathways. It not only deep-
ens our understanding of the molecular intrica-
cies governing cell death but also presents nov-
el strategies to modulate apoptosis in cancer 
cells. Ultimately, the article highlights the signifi-
cance of BCL proteins as promising therapeutic 
targets and the potential of BCL-2 inhibitors for 
personalized cancer therapy, paving the way for 
advancements in cancer treatment.

Key Words: BCL-2 proteins, BH3 only pro-
teins, anti-apoptotic proteins, pro-apoptotic 
proteins

Introduction

The B-cell lymphoma (BCL) protein 
family encompasses a diverse group of regu-
latory proteins involved in the intricate control 
of apoptosis, a fundamental process in cellular 
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homeostasis (1). Apoptosis, or programmed cell 
death, plays a crucial role in embryonic develop-
ment, tissue remodelling, and the elimination of 
damaged or infected cells(2). Dysregulation of 
apoptosis is strongly associated with the patho-
genesis of various diseases, including cancer, 
Studying of BCL proteins essential for under-
standing and developing therapeutic strategies 
(2). 

The BCL family can be classifi ed (Fig-
ure 1) into three main groups based on their 
function and structural domains: anti-apoptotic 
proteins (e.g., BCL-2, BCL-XL), pro-apoptotic 
eff ectors (e.g., BAX, BAK), and BCL-2 homol-
ogy-3 (BH3) only proteins (e.g., BIM, BAD)(3). 
These proteins dynamically interact and regu-
late the balance between cell survival and death 
by modulating mitochondrial integrity, caspase 
activation, and the release of pro-apoptotic fac-
tors (4).

Figure 1: Classifi cation of Bcl-2 Protein Family

Overexpression of B-cell lymphoma 2 
(BCL-2) has been associated with increased 
resistance to apoptosis, allowing cells to evade 
programmed cell death and contribute to tumor-
igenesis and cancer progression (4). The dys-
regulation of BCL-2 expression or function can 
lead to the evasion of apoptosis, promoting cell 
survival, tumor growth, and resistance to ther-
apeutic interventions. Therefore, understanding 
the role of apoptosis in regulating the BCL-2 

protein is important in cancer research and may 
provide valuable insights into the development 
of targeted therapies (4).

Investigating the role of BCL proteins 
in cancer research is of paramount importance 
due to their central involvement in apoptosis 
and their dysregulation in various malignan-
cies (5). Aberrant expression of BCL proteins, 
such as upregulation of anti-apoptotic proteins 
or loss of pro-apoptotic eff ectors, can confer a 
survival advantage to cancer cells, contributing 
to tumor initiation, progression, and therapy re-
sistance (6).

Recent studies have highlighted the 
clinical signifi cance of BCL proteins as diagnos-
tic and prognostic markers in multiple cancer 
types (7). For instance, BCL-2 overexpression 
has been associated with adverse outcomes 
in lung cancer and breast cancer while BCL-2 
downregulation has been linked to aggressive 
prostate cancer phenotypes (8). Understand-
ing the structural and functional aspects of BCL 
proteins can uncover novel therapeutic targets 
and inform the development of precision medi-
cine approaches.

One of the remarkable advancements 
in the fi eld has been the development and uti-
lization of small-molecule inhibitors and BCL-
2 homology 3 (BH3) mimetics that specifi cally 
target the BCL-2 protein (9). These compounds 
aim to disrupt the interactions between BCL-
2 and its pro-apoptotic counterparts, such as 
BCL-2-associated X protein (BAX) and BCL-2 
homologous antagonist/killer (BAK) and restore 
the apoptotic signalling cascade (9,10). By in-
hibiting the anti-apoptotic function of BCL-2, 
these drugs promote apoptosis and sensitize 
cancer cells to cytotoxic therapies (11).

Venetoclax (ABT-199), a potent BCL-2 
inhibitor, has emerged as a breakthrough thera-
peutic agent in the treatment of certain haema-
tological malignancies (12). It has demonstrat-
ed remarkable effi  cacy as a single agent or in 
combination with other chemotherapeutic drugs 
in various haematological cancers, including 
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chronic lymphocytic leukaemia (CLL) and acute 
myeloid leukaemia (AML) (12,13). Venetoclax 
has been approved by regulatory authorities 
and is commercially available for the treatment 
of specific indications. Other BCL-2 inhibitors 
currently under investigation include navitoclax 
(ABT-263) and sabutoclax (BI-97C1), which 
target both BCL-2 and related anti-apoptotic 
proteins, such as B-cell lymphoma-extra-large 
(BCL-XL) and myeloid cell leukaemia sequence 
1 (MCL-1) (13). These inhibitors have shown 
promising results in preclinical studies and 
early-phase clinical trials, demonstrating their 
potential as therapeutic options for various can-
cers (12).

Furthermore, the development of BH3 
mimetics, which mimic the BH3 domain of 
pro-apoptotic proteins and selectively target an-
ti-apoptotic proteins, has opened new avenues 
for precision medicine (14). These BH3 mimet-
ics, such as obatoclax, ABT-737, and ABT-199, 
have shown efficacy in preclinical models and 
are being evaluated in clinical trials for the treat-
ment of haematological and solid malignancies 
(15).

Moreover, the development of 
small-molecule inhibitors and BH3 mimetics 
that selectively target BCL proteins has shown 
promising results in preclinical and clinical stud-
ies. These targeted therapies aim to restore the 
delicate balance between pro- and anti-apop-
totic BCL proteins, sensitizing cancer cells to 
cell death and overcoming treatment resistance 
(15). Therefore, unravelling the intricate mech-
anisms of BCL protein regulation and their in-
teractions provides a foundation for the devel-
opment of innovative therapeutic strategies in 
cancer treatment. 

Structural domain of BCL family

The BCL-2 homology (BH) domains 
constitute a crucial structural feature of the BCL 
protein family. BH domains are conserved re-
gions within the protein sequence that partici-
pate in protein-protein interactions and deter-
mine the functional properties of BCL proteins 

(16). The BH domains are classified into four 
subgroups: BH1, BH2, BH3, and BH4. Each 
subgroup has distinct structural and functional 
characteristics. BH1 and BH2 domains are pri-
marily found in the multi-domain anti-apoptotic 
proteins, while BH3 domains are present in both 
pro-apoptotic effectors and BH3-only proteins 
(16). Multi-domain anti-apoptotic proteins, such 
as BCL-2, BCL-XL, and MCL-1, contain multi-
ple BH domains, including BH1, BH2, and BH3 
(17).

Understanding the structural organi-
zation of BCL proteins and their functional do-
mains is important in elucidating the complex 
mechanisms underlying apoptosis. Dysregula-
tion of BCL proteins can lead to abnormal cell 
survival, contributing to the development and 
progression of various diseases, including can-
cer (18).

Anti-apoptotic Proteins 

BCL-2

BCL-2 interacts with proteins like BAX 
and BAK, which promote cell death. BCL-2 forms 
complexes with these proteins, preventing them 
from causing damage to the mitochondria and 
stopping the release of apoptotic factors (19). 
BH3-only proteins such as BAD, BIM, PUMA, 
and BID can neutralize the inhibitory effect of 
BCL-2, allowing other pro-death proteins to ini-
tiate apoptosis. Additionally, there are synthetic 
compounds called BH3 mimetics that mimic the 
function of BH3-only proteins. BH3 mimetics 
can disrupt the interaction between BCL-2 and 
pro-survival proteins, leading to apoptosis (19).

BCL-XL

BCL-XL (BCL2L1) protein consists of 
structural domains including BH1, BH2, and 
BH3 domains (20). These domains are import-
ant for protein-protein interactions and modulat-
ing the function of BCL-XL. BCL-XL is primarily 
localized in the mitochondria, where it exerts 
its anti-apoptotic effects (21). By residing in 
the outer membrane of mitochondria, BCL-XL 
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protects the integrity of these organelles and 
prevents the release of apoptotic factors. Inter-
acting proteins of BCL-XL include Bax and Bak, 
which are pro-apoptotic proteins (21). BCL-XL 
forms heterodimers with Bax and Bak, inhibiting 
their pro-apoptotic activity (21). This interaction 
prevents the formation of pores in the mitochon-
drial membrane, thereby blocking the release 
of apoptotic factors. Key regulators of BCL-XL 
include BH3-only proteins like Bim, Bad, and 
Puma (22). These proteins can bind to BCL-XL 
and neutralize its anti-apoptotic function, allow-
ing pro-apoptotic proteins to promote apopto-
sis (22,23). Recent studies have shed light on 
the importance of BCL-XL in cell survival and 
apoptosis regulation (23). A study presented a 
case of a patient with metastatic colon cancer 
and highlighted the role of BCL-XL in the pro-
gression of the disease. The study found that 
the patient had a mutation in the v-Raf murine 
sarcoma viral oncogene homolog B (BRAF) and 
a deficiency in mismatch repair, which led to the 
overexpression of BCL-XL and contributed to 
the development of metastatic lesions (23).

MCL-1

MCL-1 possesses structural domains 
including BH1, BH2, and BH3 domains. These 
domains are important for its interactions with 
other proteins and modulating its anti-apoptotic 
function (24). The protein is primarily localized in 
the mitochondria, where it exerts its anti-apop-
totic effects (25). By residing in the outer mem-
brane of mitochondria, MCL-1 helps maintain 
mitochondrial integrity and prevents the release 
of apoptotic factors. MCL-1 interacts with sever-
al proteins, including pro-apoptotic members of 
the BCL-2 family such as BIM, BAK, and NOXA 
(26). These interactions are crucial for deter-
mining the balance between cell survival and 
apoptosis. MCL-1 can form heterodimers with 
pro-apoptotic proteins, inhibiting their ability to 
promote apoptosis (27).

BCL-W

BCL-W (BCL2L2) is an anti-apoptotic 
protein that has been less studied compared 

to other members of the BCL-2 family (28). 
It shares structural homology with other an-
ti-apoptotic proteins, including BCL-2 and BCL-
XL. Like other BCL-2 family members, BCL-W 
functions to inhibit apoptosis and promote cell 
survival (28). 

BFL-1

This protein consists of BH1, BH2, and 
transmembrane domains, which are essential 
for its interactions with other proteins and its 
anti-apoptotic function. BFL-1 is primarily local-
ized to the mitochondria, particularly the outer 
mitochondrial membrane (29). BFL-1 has been 
associated with various cellular processes and 
interactions. One notable interaction involves its 
binding to Beclin-1, which enhances the prolif-
eration of macrophages and mast cells during 
allergic reactions. By interacting with Beclin-1, 
BFL-1 supports the survival and expansion of 
these immune cells (30).

Pro-apoptotic Effectors 

BAX (Bcl-2-associated X protein)

BAX is a pro-apoptotic protein that 
plays a crucial role in programmed cell death. 
It is activated by various apoptotic signals, such 
as DNA damage, endoplasmic reticulum stress, 
and growth factor withdrawal (31). The activa-
tion of BAX involves a series of conformational 
changes, oligomerization, and membrane inser-
tion (32). These processes lead to the formation 
of pores in the outer mitochondrial membrane, 
known as mitochondrial outer membrane per-
meabilization (MOMP) (31). As a result, Cy-
tochrome c, among other factors, is released 
into the cytoplasm, leading to the assembly of 
the apoptosome and subsequent activation of 
caspases, initiating cell death (33).

BAK (Bcl-2 antagonist/killer)

Like BAX, BAK interacts with anti-apop-
totic proteins such as BCL-2 and BCL-XL. The 
dynamic balance between BAK and these an-
ti-apoptotic proteins determines whether apop-
tosis is initiated or prevented (34).
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BOK (Bcl-2-related ovarian killer)

BOK exhibits a broader range of 
pro-apoptotic activities compared to BAX and 
BAK. It can induce apoptosis through both mi-
tochondrial-dependent and mitochondrial-in-
dependent pathways (35). BOK interacts with 
Beclin-1 and other autophagy-related proteins, 
modulating autophagic activity (36). BOK ex-
pression is regulated by cellular stressors such 
as DNA damage and viral infection. Its upregu-
lation can contribute to cell death in response to 
these stressors (36).

BH3- Domain only Protein

Bcl-2-interacting mediator of cell death (BIM)

The binding of BIM to anti-apoptotic 
proteins results in the displacement of pro-apop-
totic effectors, leading to their activation and 
subsequent initiation of apoptosis (37). BIM can 
also directly activate BAX and BAK by interact-
ing with their hydrophobic grooves, promoting 
their oligomerization and pore formation in the 
mitochondrial outer membrane (38).

BH3-interacting domain death agonist (BID)

BID serves as a critical link between the 
extrinsic and intrinsic apoptotic pathways (Fig-
ure 2), connecting death receptor activation to 
mitochondrial apoptosis (39). Upon cleavage by 
caspase-8, BID generates the truncated form 
(tBID), which translocate to the mitochondria 
and interacts with BAX and BAK (40). The inter-
action of tBID with BAX and BAK induces their 

conformational changes and activation, promot-
ing MOMP and the release of apoptotic factors 
(41).

p53 upregulated modulator of apoptosis 
(PUMA)

PUMA is a potent inducer of apoptosis 
and functions as a critical mediator of p53-de-
pendent and -independent apoptotic pathways 
(42). Its transcriptional activation occurs in re-
sponse to various cellular stresses, including 
DNA damage, oncogenic signalling, and hypox-
ia (43).

Bcl-2-associated death promoter (BAD)

In its unphosphorylated state, BAD 
forms heterodimers with BCL-2 or BCL-XL, 
preventing their interactions with pro-apoptotic 
effectors, BAX and BAK (44). Phosphorylation 
of specific serine residues on BAD promotes its 
dissociation from BCL-2 or BCL-XL, enabling 
the activation of BAX and BAK (45).

BCL 
Family 
Member

Structural 
Domains

Function Cellular Localiza-
tion

Interacting 
Proteins

Key Regulators

BCL-2 BH1, BH2, 
BH3, BH4

Anti-apoptotic Mitochondrial 
membrane

BAX, BAK, 
BAD, BIM

BH3-only proteins, BH3 
mimetics, BCL-2 homolo-
gy 3 (BH3) peptides

BCL-XL BH1, BH2, 
BH3, BH4

Anti-apoptotic Mitochondrial 
membrane

BAX, BAK, 
BAD, BIM

BH3-only proteins, BH3 
mimetics, BCL-2 homolo-
gy 3 (BH3) peptides

Figure 2: Intrinsic apoptotic pathway.

Table 1: BCL2 family members and their key regulators.
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MCL-1 BH1, BH2, 
BH, BH4

Anti-apoptotic Mitochondrial 
membrane

BIM, NOXA BH3-only proteins, BH3 
mimetics, Mule, Mule-in-
duced degradation

BCL-W BH1, BH2, 
BH3, BH4

Anti-apoptotic Mitochondria BAX, BAK, 
BIM, BAD, 
PUMA

BH3-only proteins, BH3 
mimetics (context-depen-
dent)

BFL-1 BH1, BH3 Anti-apoptotic Mitochondria BAX, BAK, 
BIM, BAD, 
PUMA

BH3-only proteins, BH3 
mimetics

BAX BH1, BH2, 
BH3

Pro-apoptotic Cytoplasm, Mito-
chondria

BCL-2, BCL-
XL, MCL-1, 
BFL-1

BH3-only proteins, BH3 
mimetics, tBID, PUMA, 
BIM, BAD, Bmf, Hrk, ART

BAK BH1, BH2, 
BH3

Pro-apoptotic Mitochondria BCL-2, BCL-
XL, MCL-1, 
BFL-1 

BH3-only proteins, BH3 
mimetics, tBID, PUMA, 
BIM, BAD, Bmf, Hrk, ART

BOK BH1, BH2, 
BH3

Pro-apoptotic Mitochondria BCL-2, BCL-
XL, MCL-1, 
BFL-1

BH3-only proteins, BH3 
mimetics, tBID, PUMA, 
BIM, BAD, Bmf, Hrk, ART

BIM BH3 BH3- domain 
only proteins. 

Cytoplasm, Mito-
chondria

BCL-2, BCL-
XL, MCL-1, 
BFL-1 

JNK, p38, FOXO, ERK, 
Chk1

BID BH3 BH3- domain 
only proteins.

Cytoplasm BCL-2, BCL-
XL, MCL-1, 
BCL-1 

Caspase-8, caspase-3

PUMA BH3 BH3- domain 
only proteins.

Cytoplasm, Mito-
chondria

BCL-2, BCL-
XL, MCL-1, 
BFL-1

p53, p73, NOXA, BAX, 
BAK, BAD, MCL-1, BCL-
XL, BCL-2

BAD BH3 BH3- domain 
only proteins.

Cytoplasm BCL-2, BCL-
XL, MCL-1, 
BFL-1

Akt, PKA, Raf-1, ERK, 
JNK, Pim-1, B-Raf, PAK1, 
PKC, S6K, RSK, PDK1

BCL-2 and lung

Several studies have investigated the 
relationship between BCL-2 and lung cancer. In 
high-grade neuroendocrine lung cancers, BCL-
2 has been identified as an acquired vulnerabil-
ity and a potential therapeutic target (46). Tar-
geted inhibition of BCL2 has shown efficacy in 
overcoming resistance to chemotherapy in non-
small cell lung cancer (NSCLC) cell lines (47). 
However, the prognostic importance of BCL-2 
expression in lung cancer is still debated. While 

some studies have shown that BCL-2-negative 
expression is associated with poor prognosis47, 
a systematic review of studies in non-small cell 
lung cancer revealed conflicting results, with 
smaller studies showing a significant relation-
ship between BCL-2 expression and risk of dy-
ing, while larger studies showed non-significant 
effects (48).

The regulation of BCL-2 expression 
and its impact on lung cancer progression have 
also been investigated. For example, nicotine 
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has been found to induce BCL-2 phosphoryla-
tion, leading to increased survival of lung can-
cer cells (49). Additionally, the transcription fac-
tor Runt-related transcription factor 2 (RUNX2) 
has been implicated in inhibiting the apoptosis 
process in lung cancer, and its knockdown has 
been shown to downregulate the expression of 
BCL-2 (50). Furthermore, the interaction be-
tween BCL-2 and other molecules has been 
explored. BCL-2-associated athanogene 3 
(BAG3), a member of the BAG family, has been 
found to have a tight relationship with BCL-2 
and can synergistically act with BCL-2 to induce 
anti-apoptotic effects in lung cancer (51). The 
miR-497/BCl-2 axis has also been identified as 
a potential therapeutic target in lung cancer, as 
miR-497 can decrease resistance to cisplatin by 
targeting BCL-2 (52).

BCL-2 plays a complex role in lung can-
cer, with both therapeutic and prognostic impli-
cations. Targeted inhibition of BCL-2 has shown 
promise in overcoming resistance to chemo-
therapy in NSCLC, while the prognostic signif-
icance of BCL-2 expression in lung cancer re-
mains controversial. Further research is needed 
to fully understand the mechanisms underlying 
the relationship between BCL-2 and lung can-
cer and to explore its potential as a therapeutic 
target.

BCL-2 and breast cancer

Early studies have shown that BCL-2 
expression is associated with low-grade, slow-
ly proliferating Oestrogen positive (ER+) breast 
tumours, and its correlation with ER status is 
attributed to the improved survival observed 
in these tumours53. Recent studies have fur-
ther supported the clinical validity of BCL2 as 
a prognostic marker for early-stage breast 
cancer, independent of ER, Human Epidermal 
Growth Factor Receptor 2 (HER2), and adju-
vant therapy received (53). BCL-2 expression 
has been associated with favourable 5-year re-
currence-free survival (RFS) and disease-spe-
cific survival (DSS) in luminal A breast cancer54. 
However, the prognostic role of BCL-2 expres-

sion in breast cancer is subtype-specific, and its 
significance in other subtypes remains unclear 
(54). In addition to its prognostic value, BCL-2 
has been investigated in relation to other factors 
in breast cancer. High BCL-2 protein expression 
has been associated with a favourable outcome 
regardless of ER, Progesterone (PR), or HER2 
status (55). On the other hand, BCL2 expres-
sion is only observed in a small proportion of 
triple-negative breast cancers (55). Further-
more, BCL-2 has been studied in the context 
of genetic polymorphisms. A study found that 
the BCL-2 C (-938) A gene polymorphism was 
associated with an increased risk of developing 
breast cancer (56). However, another study did 
not find an association between a BCL-2 pro-
moter polymorphism (rs2279115) and BCL-2 
expression or overall survival in breast cancer 
patients (57). The relationship between BCL-2 
and breast cancer has also been explored in 
terms of its interaction with other molecules. 
miR-181a-5p has been found to downregulate 
BCL-2, leading to apoptosis in breast cancer 
cells (58). Additionally, BCL-2 expression has 
been correlated with p52 expression in breast 
carcinoma, suggesting a potential relationship 
between the two (59).

Breast cancer research has focused on BCL-
2, whose expression has been linked to a va-
riety of clinicopathologic traits and prognoses. 
When it comes to specific breast cancer sub-
types, particularly luminal A tumours, BCL-2 
has demonstrated prognostic relevance. Re-
search is still being done on its importance in 
various subtypes of breast cancer as well as 
how it affects prognosis. Furthermore, studies 
have shown BCL-2 interacts with several other 
elements, including genetic polymorphisms and 
molecular interactions. To completely compre-
hend BCL-2’s function in breast cancer and its 
potential as a therapeutic target, more research 
is required.

BCL-2 and prostrate cancer

Overexpression of BCL-2 has been 
associated with adverse prognostic factors, 
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disease progression, and therapy resistance in 
prostate cancer (60). High BCL-2 expression 
has been correlated with higher Gleason scores 
and lower biochemical recurrence-free survival 
in patients with advanced prostate cancer (61). 
Additionally, BCL-2 has been implicated in the 
development of castration-resistant prostate 
cancer (62). The regulation of BCL-2 in prostate 
cancer has also been investigated. The Mouse 
Double Minute 2 homolog (MDM2) oncogene, 
which has ubiquitin ligase activity, may have a 
direct role in BCL-2 regulation (63). The tran-
scription factor RUNX2 has been shown to bind 
to the promoter region of antiapoptotic genes, 
including BCL-2, in prostate cancer cells (50). 
Furthermore, microRNA-205 has been iden-
tified as a regulator of BCL-2 in prostate can-
cer, with repression of BCL-2 by miR-205 being 
confirmed through reporter assays and western 
blotting (64). The relationship between BCL-2 
and other factors in prostate cancer has also 
been explored. Down-regulation of BCL-2 has 
been associated with self-reported fatigue in 
non-metastatic prostate cancer patients re-
ceiving external beam radiation therapy (65). 
Additionally, a study found that a BCL-2 poly-
morphism (-938 C>A) showed a protective role 
in susceptibility to papillary thyroid carcinoma 
(66). BCL-2 has been studied in relation to pros-
tate cancer, and its overexpression has been 
associated with adverse prognostic factors, dis-
ease progression, and therapy resistance. The 
regulation of BCL-2 in prostate cancer involves 
various mechanisms, including the involvement 
of the MDM2 oncogene, the transcription factor 
RUNX2, and microRNA-205. Further research 
is needed to fully understand the role of BCL-2 
in prostate cancer and its potential as a thera-
peutic target.

BCL-2 as therapeutic targets to treat cancer

There are several types of therapeutic 
inhibitors that target BCL-2 in various cancers. 
These inhibitors include microtubule-directed 
agents, protein phosphatase 1/2A inhibitors, 
bromodomain and extra-terminal (BET) protein 
inhibitors, autophagy inhibitors, mitochondrial 

respiration inhibitors, ceramide metabolism in-
hibitors, epigenetic therapy, and MDM2 inhibi-
tors. Microtubule-directed agents, such as taxol 
and nocodazole, have been shown to induce 
BCL-2 phosphorylation (67). Protein phospha-
tase 1/2A inhibitors, such as okadaic acid, can 
also induce BCL-2 phosphorylation (67). These 
agents target BCL-2 through different pathways, 
including extracellular signal-regulated kinase 
activation and G2/M accumulation (67). BET 
protein inhibitors have been investigated for 
their potential to increase sensitivity to BCL-2 in-
hibitors in chronic lymphocytic leukaemia (CLL) 
(68). These inhibitors work by inhibiting bromo-
domain and extra-terminal proteins, which can 
enhance the effectiveness of BCL-2 inhibitors 
like venetoclax (68). Autophagy inhibitors have 
also been explored as therapeutic agents tar-
geting BCL-2. Inhibition of the dissociation of 
the Beclin1 and BCL-2 complex, a negative 
regulator of autophagy, has been shown to be 
a potential strategy for developing autophagy 
inhibitors (69). These inhibitors can be useful in 
the treatment of diseases involving autophagy 
dysregulation, including cancer and viral infec-
tions (69). Mitochondrial respiration inhibitors 
have been investigated for their potential to tar-
get BCL-2 in high-grade MYC-associated B-cell 
lymphoma (70). These inhibitors can disrupt 
mitochondrial metabolism and induce cancer 
cell death, potentially synergizing with BCL-2 
inhibitors (70). Ceramide metabolism inhibitors 
have also been explored as potential therapeu-
tics targeting BCL-2. Inhibition of ceramide me-
tabolism can sensitize leukaemia cells to inhibi-
tion of BCL-2 like proteins, leading to enhanced 
apoptosis (71). Epigenetic therapy has been 
shown to activate endogenous retroelements, 
which remodel mitochondrial metabolism and 
sensitize cancer cells to BCL-2 inhibitors (72). 
This combination therapy has shown effica-
cy in acute myeloid leukaemia and may have 
potential for other cancers (72). MDM2 inhibi-
tors, such as nutlin-3a, have been investigated 
for their ability to activate the p53 pathway and 
overcome BCL-2 overexpression in lymphoma. 
Combination therapy of MDM2 inhibitors with 
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BCL-2 inhibitors has shown synergistic effects 
in inducing apoptosis in leukaemia (73).

Conclusion

Apoptosis and programmed cell death 
are tightly regulated by the BCL-2 protein fam-
ily. The family includes both proapoptotic and 
antiapoptotic members that, in turn, either en-
courage or prevent the release of cytochrome 
c from mitochondria. Through the creation of 
pores in the outer mitochondrial membrane, 
the proapoptotic proteins BAX and BAK directly 
mediate the release of cytochrome c. The antia-
poptotic members, on the other hand, like BCL-
2 and BCL-XL, stop the release of cytochrome 
c and support cell survival. BH3-only proteins 
are a diverse group of proteins that regulate 
apoptosis and autophagy. They can be clas-
sified into BH3-only proteins, sensitizers, and 
activators. These proteins play a critical role in 
promoting apoptosis by activating proapoptotic 
effectors or neutralizing antiapoptotic proteins. 
BH3-only proteins also contribute to the induc-
tion of autophagy. Understanding the structural 
and functional aspects of BH3-only proteins is 
important for developing targeted therapies for 
cancer and other diseases. 
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