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Abstract

The design of antibodies using ma-
chine learning has emerged as a cutting-edge 
approach in the field of medical sciences and 
therapeutics. This study delves into the prin-
ciples, methods, and deployment of machine 
learning approach for antibody design. The 
present study showed use of extensive anti-
body databases to train computational models, 
facilitating the prediction of antibody-antigen in-
teractions. Seven different encoders were used 
for the vectorization of the antibody and antigen 
sequences. Conjoint triad showed unsurpassed 
performance in the machine-learning algorithm 
with 0.78 correlation and outperformed other 
encoding methods. The case study of Ritux-
imab was used to demonstrate the practical 
application of the machine-learning model that 
was developed. The affinity score predicted 
by the model was utilised to select the most 
promising rituximab sequence. Structural in-
vestigation employed molecular dynamics (MD) 
simulation to authenticate the novel sequence 
(variant) of rituximab. Rituximab variant showed 
-45.44 kcal/mole compared to the wild type that 
had -37.66 kcal/mole as a binding free energy 
for the antigen-antibody complex. Free energy 
landscape (FEL) was calculated on the first two 
principal components (PC1 and PC2). The wild 
type has three minimum energy basins, where-

as this variant exhibited only one. This showed 
that complex produced by antibody variant has 
a greater capacity to attain global minima. This 
study sheds light on the innovative application 
of machine learning in antibody design and 
also provides compelling evidence of its effica-
cy through the case study of rituximab. Present 
study opened new avenues for the development 
of antibodies with enhanced binding capabili-
ties.    

Keywords: Rituximab, Machine Learning, Im-
munogenicity, Molecular Dynamic Simulation. 

Introduction

Monoclonal antibodies (MAbs) also 
known as therapeutic antibodies (TAbs)(1). 
Therapeutic antibodies are classified as pro-
tein-based therapeutic agents that have un-
dergone engineering to recognise and bind to 
specific molecules (e.g., proteins, cells, and 
disease-associated molecules) within the or-
ganism. The creation of these antibodies is fa-
cilitated using specialized techniques that en-
able the generation of substantial quantities of 
identical antibodies capable of recognizing and 
engaging with a specific target (1). A range of 
therapeutic antibodies were introduced in the 
mid-1990s and have since been implemented 
in clinical settings (2). Currently, the quantity of 
licenced therapeutic antibodies (TAbs) stands 
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at approximately one hundred, with a greater 
number in the process of development this in-
cludes various designed and modified antibody 
formats. TAbs are commonly employed in the 
management of diverse severe diseases, in-
cluding cancer, rheumatoid arthritis, multiple 
sclerosis, Crohn’s disease and leukaemia(3). 
The therapeutic efficacy of these TAbs can be 
attributed to one or more mechanisms, including 
target binding and neutralization, direct cytotox-
icity, antibody-dependent complement-depen-
dent cytotoxicity, antibody-dependent cellular 
cytotoxicity, or other unidentified mechanisms 
(4). The range of disease areas that can be tar-
geted by therapeutic antibodies has expanded 
significantly. Antibodies are now being used as 
medicines in various fields, including cancer, 
inflammatory illness, organ transplantation, car-
diovascular disease, infection, respiratory dis-
ease, ophthalmologic disease, and others (2).

The essential role of immune-mediated 
effector functions in therapeutic antibodies tar-
geting tumour cells is their specific binding to 
targets via the antibody-binding fragment (Fab) 
region(5), followed by the induction of immune 
responses via the fragment crystallizable (Fc) 
region. Cross-linking of cell-bound antibodies 
with Fc gamma receptors (FcRs) is responsible 
for activating immune effector cells. This inter-
action results in natural killer (NK) cells medi-
ating antibody-dependent cellular cytotoxicity 
(ADCC). Similarly, antibody-dependent cellular 
phagocytosis (ADCP) is initiated by the interac-
tion between FcRs and macrophages. This pro-
cess involve the internalisation of antibody-op-
sonized target cells into phagosomes, where 
they are degraded via phagosome maturation 
and acidification(6).

The therapeutic antibody interacts with 
the antigen at a specific epitope region. The epi-
tope refers to a spatial arrangement acknowl-
edged by the complementary paratype of an 
antibody (7). The binding affinity between anti-
body and antigen can be determined by various 
traditional methods, including surface plasmon 
resonance (SPR) and enzyme-linked immuno-

sorbent assay (ELISA). Although these are ef-
fective methods, there are still some limitations, 
such as time, cost, and potential variation in re-
sults (8). 

 

 The equilibrium dissociation constant, 
denoted as ‘kd’, represents the ratio of the dis-
sociation rate constant (‘koff’) to the association 
rate constant (‘kon’) for the binding interaction 
between an antibody and its corresponding an-
tigen (9). An inverse relationship exists between 
‘kd’ and affinity. The ‘kd’ value is a measure of 
the antibody concentration required for a specif-
ic experiment. A lower kd value indicates a stron-
ger affinity of the antibody, as it corresponds to 
a lower concentration needed (10). Various tra-
ditional techniques were used to determine kd  
during antibody –antigen interactions, including 
flow cytometry and ligand tracer (11). Traditional 
methods for determining the dissociation con-
stant (kd) in antibody-antigen interactions face 
difficulties such as the assumption of 1:1 bind-
ing, affinity heterogeneity, omission of kinetic in-
formation, inability to account for conformation-
al changes, reliance on equilibrium conditions, 
and potential interference from immobilization 
and sample matrix effects. Moreover, the oth-
er factors that affect the antigen-antibody in-
teraction are temperature, pH, ionic strength, 
concentration antigen-antibody(12). With all of 
these factors, it may be difficult to determine an 
accurate kd value. 

In the light of the challenges for determining 
the binding affinity between Antibody and Anti-
gen, Therefore, in this study, a machine learn-
ing (ML) model to determine kd was proposed. 
The ML model was trained on antigen and anti-
body protein sequences with known kd values. 
It presents a novel machine learning (ML) ap-
proach for the efficient determination of kd, util-
ising existing kd values of antigen and antibody 
protein sequences. Determining the binding af-
finity using the sequence made the calculation 
faster. This could allow modifying the antibody 
sequence to improve the sensitivity and speci-

 koff
 konKd=
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ficity against the given antigen. Later, this study 
demonstrated a case study of application of this 
method on the Rituximab. Engineered Ritux-
imab was designed and validated using molec-
ular dynamics simulation. 

Materials and Methods

Data collection

Collection

The study focuses on the structural characteris-
tics and binding affinity of antigen-antibody com-
plexes, using data obtained from the SAbDab 
database(13, 14). (SAbDab is an in-depth data-
base of antibody-antigen pairs. Every structure 
is accompanied with several information, includ-
ing experimental details, antibody nomenclature 
(e.g., pairings of heavy and light chains), curat-
ed affinity data, and sequence annotations. As 
of July 25, 2023, 15,065 antigen-antibody com-
plexes were accessible. After eliminating blanks 
in affinity and removing incorrect entries, 916 
antigen-antibody pair remained that had affini-
ty values (kd). These antibody sequences have 
heavy chain and light chain both. In the creating 
the data for machine learning model the heavy 
and light chain sequences were concatenated. 
Antigen sequences were also fed separately to 
the model with the sequence of the antibody 
and the kd value.

 Machine learning model 

DeepPurpose framework(15) was 
used for building the machine learning model. 
This framework is essentially constructed for 
drug-target interaction (DTI) used in drug repur-
posing and virtual screening. However, it also 
has model for protein-protein interaction. The 
source codes were sourced from github repos-
itory (kexinhuang12345/DeepPurpose: A Deep 
Learning Toolkit for DTI, Drug Property, PPI, 
DDI, Protein Function Prediction (Bioinformat-
ics) (github.com)). DeepPurpose was preferred 
due to its user-friendly design which facilitated 
the use of multiple encoders for encoding the 
sequence of proteins and multiple evaluation 

metrics such as MSE, R-squared and Concor-
dance Index. It also enabled the support for cus-
tom model architecture with utilities for training 
and evaluating the models. Here, 8 different en-
coders were used for encoding the protein se-
quence and result was evaluated: 'CNN', 'AAC', 
'PseudoAAC', 'Conjoint_triad', 'Quasi-seq', 
'ESPF', 'Transformer', 'CNN_RNN'. ‘CNN’ and 
'Conjoint_triad' encoder outperformed the oth-
ers and thus used as preferred encoding tech-
nique. Though DeepPurpose library enabled 
the utilisation of some pretrained models, a 
custom deep learning model was developed 
combining two different neural network archi-
tectures. The combined neural network archi-
tectures were, Convolutional Neural Network 
(CNN) and Message Passing Neural Network 
(MPNN). The configuration of the model used 
was, 100 epochs, 0.001 learning rate and 128 
batch sizes, these parameters along with other 
essential parameters are represented in Table 
1. The interaction prediction for antibodies was 
complex due to their large sequence length. 
Thus, such custom model was utilised with test-
ing on multiple encoders to ensure highly accu-
rate predictions. The model was trained on 70% 
of the known dataset of antibody-antigen pairs 
with their corresponding Kd values in log. The 
example data is shown below:

Antibody

EVQLVESGGGLVQPGGSLRLS -
CAASGYTFTNYGMNWVRQAPGKGLEWVG-
WINTYTGEPTYAADFKRRFTFSLDTSK -
S T A Y L Q M N S L R A E D T A V Y Y C A K Y -
PHYYGSSHWYFDVWGQGTLVTVSSAST-
KGPSVFPLAPSSKSTSGGTAALGCLVKDYF-
PEPVTVSWNSGALTSGVHTFPAVLQSSGLYS-
LSSVVTVPSSSLGTQTYICNVNHKPSNTK-
VDKKVEPKSCDKTHTXXXDIQMTQSPSSL-
SASVGDRVTITCSASQDISNYLNWYQQKP-
GKAPKVLIYFTSSLHSGVPSRFSGSGSGTD-
FTLTISSLQPEDFATYYCQQYSTVPWTFGQ-
GTKVEIKRTVAAPSVFIFPPSDEQLKSGT-
ASVVCLLNNFYPREAKVQWKVDNALQSGN-
SQESVTEQDSKDSTYSLSSTLTLSKADYEKH-
K V YA C E V T H Q G L S S P V T K S F N R G E C 
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Antigen

GQNHHEVVKFMDVYQRSYCHPIETL-
VDIFQEYPDEIEYIFKPSCVPLMRCGGCCN-
DEGLECVPTEESNITMQIMRIKPHQGQHI-
GEMSFLQHNKCECRPKKD  

kd:1.22 

The model used 10% of the data for 
validation while rest 20% for testing (coefficient 
of determination), making the split ratio of the 
dataset to be 70:10:20, where each ratio part 
corresponds to train, validation and test respec-
tively. The regression score (r2) was used as 
evaluation metric to calculate the performance.

Table 1. Parameters associated with the ma-
chine learning model.

Experimental Parameter Value

Learning rate 0.001

Batch size 128

Epoch 100

Hidden layer dimension 1024, 1024, 512

Size of hidden layers in MPNN 128

Number of layers in the MPNN 3

Number of filters in convolutional 
layer

32, 64, 96

Size of the filters in each convolu-
tional layer

4, 8, 12

CDR Identification

The recognition of Complementarity 
Determining Regions (CDR) sequences plays a 
crucial role in augmenting the properties of anti-
bodies, such as their binding affinity, specificity, 
and overall therapeutic effectiveness. AbRSA 
tool(16) was used to predict the CDR regions, 
which is a tool specifically stands for Antibody 
Numbering and CDR Delimiting. This tool was 
employed to predict the Complementarity Deter-
mining Regions (CDR) for both the VH (Heavy 
chain) and VL (Light chain) of each antibody.

Rituximab Structure

 The structure of rituximab was sourced 

from protein data bank (PDB)(17), numerous 
structures of rituximab were submitted in the 
PDB. Here, the structure with PDB ID: 2OSL(18, 
19) was downloaded for determining the known 
interaction of CDR region and epitope of anti-
gen.

Sequence engineering

In this study, the Complementarity De-
termining Region (CDR) of rituximab was fo-
cused on, being a pivotal component guiding 
the binding specificity and affinity. A comprehen-
sive computational analysis was undertaken to 
explore all possible amino acid combinations 
within the CDR.  

Structure model building

 Novel sequence of the rituximab that 
predicted the maximum affinity with the anti-
gen was modelled using a machine learning 
(ML)-based technology provided by the SAb-
Pred server(20). The ABodyBuilder-ML module, 
which is a component of the SAbPred server, 
was utilised for the purpose of novel rituximab 
structure modelling using sequence data. The 
ABodyBuilder-ML programme was applied to 
predict the structure of the variable domains of 
the antibody, namely VH (heavy chain) and VL 
(light chain), that are commonly referred to as 
the Fv (fragment variable).

MD       Molecular Dynamics Simulation was 
performed for the top-selected antigen-antibody 
complexes. GROMACS2022 package was the 
software that was used to carry out the molec-
ular dynamic simulations of the top-selected 
antigen-antibody complexes for a time period 
of 100 ns(21–23). The CHARMM force field pa-
rameters (24)were used to define the topolog-
ical parameters, which were then allocated to 
both the antibodies and the antigen. The Ewald 
Particle Mesh approach was used with the pur-
pose to perform the calculations necessary to 
determine the distance electrostatic force (25). 
In order to establish a neutral system, Na+ and 
Cl- ions were introduced, and the TIP3P water 
cube model was employed with the purpose to 
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solvate the system. The steepest descent (SD) 
method, which consists of 50,000 minimization 
steps, was used on the system with the aim of 
removing any steric conflicts. In addition, the 
temperature of the entire system was raised to 
310 K, and the timestep was set to 2 fs for 100 
ps of simulation time (NVT). After that, the sys-
tem underwent additional equilibration at a pres-
sure of 1 bar for a duration of 1 ns during the 
simulation time (NPT). GROMACS was able to 
simulate at a constant temperature by employ-
ing the velocity-rescaling strategy in conjunc-
tion with a temperature coupling scheme (26). 
Temperature control was linked with pressure 
coupling, and the result was the NPT ensemble. 
The pressure coupling employed was the Parri-
nello-Rahman pressure coupling(27). Using the 
SHAKE approach(28), all hydrogen bonds were 
constrained, and after that, the coordinates of 
the structure were recorded after every 10 ps 
during the entire 100 ns (100,000 ps) produc-
tion run. The conformational stability and vari-
ation of the antigen-antibody complexes were 
determined by post MD analysis. The results of 
the 100 ns MD simulation were analysed with 
the RMSD (root mean square deviation) tool 
in GROMACS. Following the MD simulation, 
clustering was performed on the complexes by 
applying the gromos cluster method using the 
g_cluster packages of GROMACS(29, 30) with 
a threshold RMS of 0.3 nm. Later, these clusters 
were used for further analysis and interpreting 
the stability and flexibility of the antigen-anti-
body complexes. Furthermore, the binding free 
energy of the antigen-antibody was calculated 
using the MM/GBSA approach as mentioned in 
the section 1.6. Here, the middle cluster of the 
most popular cluster was used for determination 
of binding free energies. All the clusters gener-
ated were used for SASA determination, which 
were compared with the epitopes of the spike 
protein.Results and Discussion 

Data Collection

Data was collected from the SAbDab 

database, eventually 916 entries with their PDB 
ids and Kd values that had units in nanomolar. 
These Kd values were further converted to log 
values under the normalization process. The 
logarithmic values of the Kd are shown in Fig-
ure1, most data points were ranged in between 
10-6 to 10-11. There were few outliers in the data-
sheet for Kd values. Corresponding sequence 
of the antibodies and antigens were extracted 
from the protein data bank using the PDB Ids 
sourced from the SAbDab database. These se-
quences were for the Fab region of the antibody 
with their heavy and light chains sections. Both 
heavy and light chains were merged together as 
a single component of antibody. Similarly, anti-
gen sequences were also extracted as a sepa-
rate input for the machine learning model. 

Building machine learning model

Encoders, ‘CNN’, ‘AAC’, ‘PseudoAAC’, 
‘Conjoint_triad’, ‘Quasi seq’, ‘ESPF’, ‘Trans-
former’, ‘CNN_RNN’ were used for encoding the 
protein sequences of antibodies and antigens. 
All these encoders were used serially to encode 
the sequence of the target protein sequence 
and used in the DeepPurpose machine-learn-
ing model. Table 2 shows the performance of 
each encoder for predicting the Kd values. The 
original values of Kd were in nM and the mag-
nitude was converted into log scale after multi-
plying with 109. Figure 1(a) shows the original 
Kd values and converted logarithmic values. As 
observed in the plot that original Kd values are 
skewed towards 0 as most of the datapoints had 
low Kd values in nano molar. This skewedness 
can affect the performance of the prediction 
and thus they were converted into log scale 
after multiplying with 109. Figure 1(b) showed 
the normalized values of CNN and ConjointTri-
ad performed similarly in the pearson correla-
tion with the coefficient value of 0.78. However, 
mean square error for CNN was 4.08 while for 
ConjointTriad it was 4.14. Other encoders, AAC, 
ESPF and Transformer also showed correlation 
coefficient greater than 0.7. 

Table 2. Performance of the different encoder 
on the data set to predict the Kd values. 
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Encoder MSE Pearson Correlation 
Coefficient p-value Concordance 

Index

CNN 4.08 0.78 7.32E-37 0.82
AAC 5.28 0.71 1.04E-27 0.78

PseudoAAC 8.82 0.39 1.18E-07 0.66
ConjointTriad 4.14 0.78 1.43E-36 0.83

Quasi-Seq 8.79 0.42 1.12E-08 0.63
ESPF 4.96 0.73 6.68E-30 0.80

Transformer 5.60 0.71 4.88E-28 0.81
CNN_RNN 7.90 0.50 3.51E-12 0.67

ConjointTriad model showed the best 
performance for correlation coefficient and 
mean square error and thus selected for the 
further processing. ConjointTriad is widely used 
for dealing with the sequential data including 
protein sequence. The architecture comprises 
multiple convolutional layers and encodes the 
sequence within a 1D encoder, thereby cap-
turing the features and patterns inherent in the 
sequence. As the sequence of the protein was 
of different length thus the padding was also 
used during the ConjointTriad encoder. More-
over, p-values in the Table 1 shows the rele-
vance score of the prediction for their correla-
tion co-efficient. As shown in the table that all 
the p-values are lower than 0.05 and thus the 
confidence was greater than 90% for the calcu-
lated correlation coefficients. The concordance 
index evaluates how well the model’s predicted 
probabilities of survival align with the actual out-
comes.  The ConjointTriad model has the high-
est concordance index value of 0.83, while CNN 
also has a close value of 0.82. Considering all 
the evaluation metrics, Conjoint Triad encod-
er moder was selected as the best performing 
model. Moreover, various studies used machine 
learning models based deep convolutional neu-
ral networks, that used in both bio-medical and 
sensor-based study(31–34)deep convolution-
al neural networks have demonstrated domi-
nant performance in human activity recognition 
(HAR. 

Figure 1. Plot of Kd values with respect to each 
916 entries of the antibodies (a) original Kd (b) 
logarithmic values of the kd. 

CDR and structure of rituximab

Once the ML model was selected with 
the best performing encoder technique (Con-
jointTriad), the Fab sequence of the Rituximab 
was collected. PDB ID: 6VJA was sourced from 
protein databank for extracting the sequence 
of heavy and light chains of the Fab segment 
of the Antibody.  Sequence of heavy and light 
chains were submitted to the AbRSA tool for 
detecting the CDRs.  Complementarity-deter-
mining regions (CDRs) are immunoglobulin (Ig) 
hypervariable domains that regulate particular 
antibody (Ab) binding(35)fungi, protozoa and vi-
ruses. The possibility that isolated CDRs, repre-
sented by short synthetic peptides, may display 
antimicrobial, antiviral and antitumor activities 
irrespective of Ab specificity for a given antigen 
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is addressed here.\nMETHODOLOGY/PRINCI-
PAL FINDINGS: CDR-based synthetic peptides 
of murine and human monoclonal Abs directed 
to: a.

The chains are shown below with the coloured 
CDR region detected by AbRSA tool:

> RITUXIMAB FAB HEAVY CHAIN 

  1 QVQLQQPGAELVKPGASVKM-
S C K A S G  Y T F T S Y N M H W V K Q T P -
GRGLEWIGAIYPGNGDTSY  60
 61 NQKFKGKATLTADKSSSTAY-
M Q L S S L T S E D S A V Y Y C A R S T Y Y G -
GDWYFNVWGAGTTVTVS 120
121 AASTKGPSVFPLAPSSKSTS-
G G T A A L G C L V K D Y F P E P V T -
VSWNSGALTSGVHTFPAVLQS 180
181 SGLYSLSSVVTVPSSSLGTQTYICNVN-
HKPSNTKVDKKVEPKSC

> RITUXIMAB FAB LIGHT CHAIN

  1 QIVLSQSPAILSASPGEKVTMT-
C R A S S S V S Y I H W F Q Q K P G S S P -
KPWIYATSNLASGVPVR   60
 61 FSGSGSGTSYSLTISRVE-
A E D A A T Y Y C Q Q W T S N P P T F G G -
GTKLEIKRTVAAPSVFIFPPS  120
121 DEQLKSGTASVVCLLNN-
F Y P R E A K V Q W K V D N A L Q S G N S Q E S -
VTEQDSKDSTYSLSSTLTL  180
181 SKADYEKHKVYACEVTHQGLSSPVTKS-
FNRGEC

Heavy chain showed 3 CDR segments, 
CDR1 coloured as red, CDR2 coloured as or-
ange while CDR3 coloured as green. In heavy 
chain, CDR3 is the longest with 12 residues 
while CDR2 showed 8 residues and CDR1 with 
7 residues, respectively. In contrast, CDR1 has 
the maximum length of 10 in light chain, while 
CDR2 has the minimum of 7 amino acids. Struc-
ture of Rituiximab is submitted in the PDB with 
PDB ID: 6VJA, this entry has CD20 B-lympho-
cyte antigen bound with the antibody structure. 
Figure 2, shows the Antigen and Antibody struc-
tures. Only the Fab segment that interacts with 

Antigen is submitted in the protein databank, 
heavy chain has 224 amino acids while light 
chain has 213 amino acids. CD20 antigen has 
278 amino acids in the PDB entry. 

Figure 2. Structure of CD antigen that com-
plexed with Rituximab using heavy and light 
chain of Fab segment, deposited in protein data 
bank with PDB ID: 6VJA. 

Antigen in the structure is deposited 
as dimer in this structure with chain C and D 
while H and L are the heavy and light chains of 
the antibody. SER95, TRP100, HIS35, ASN33, 
SER58, TYR52, and ASP56 from the heavy 
chain was interacting with the chain C of the 
antigen while SER28, SER29, SER31, TRP91, 
and ASN94 from the light chain was involved in 
the antigen antibody interaction. It is notewor-
thy that SER28, SER29, and SER31 interacting 
residues from the light chain were from CDR1, 
while TRP91, and ASN94 were from CDR3. 
Similarly, SER58, TYR52, and ASP56 were 
from CDR2 of the heavy chain, while SER95, 
and TRP100, also seen as interactive residues, 
were from CDR3. In overall, the outcome pro-
vides a comprehensive analysis of the molec-
ular composition and binding properties of the 
Rituximab antibody, with specifi c emphasis on 
its interaction with the CD20 antigen, which is 
crucial for its therapeutic effi  cacy.

Modifi cation of antibody sequence

Later, the CDR segments of antibody were tar-
geted for the substitution of single amino ac-
ids serially. This resulted in generation of 969 
sequences that constitute of all possible com-
bination of amino acid for a given substitution. 

Figure 2. Structure of CD antigen that complexed with Rituximab using heavy and 

light chain of Fab segment, deposited in protein data bank with PDB ID: 6VJA. 

Antigen in the structure is deposited as dimer in this structure with chain C and 

D while H and L are the heavy and light chains of the antibody. SER95, TRP100, 

HIS35, ASN33, SER58, TYR52, and ASP56 from the heavy chain was interacting with 

the chain C of the antigen while SER28, SER29, SER31, TRP91, and ASN94 from the 

light chain was involved in the antigen antibody interaction. It is noteworthy that 

SER28, SER29, and SER31 interacting residues from the light chain were from CDR1, 

while TRP91, and ASN94 were from CDR3. Similarly, SER58, TYR52, and ASP56 

were from CDR2 of the heavy chain, while SER95, and TRP100, also seen as 

interactive residues, were from CDR3. In overall, the outcome provides a 

comprehensive analysis of the molecular composition and binding properties of the 

Rituximab antibody, with specific emphasis on its interaction with the CD20 antigen, 

which is crucial for its therapeutic efficacy.

Modification of Antibody Sequence

Later, the CDR segments of antibody were targeted for the substitution of single 

amino acids serially. This resulted in generation of 969 sequences that constitute of 

all possible combination of amino acid for a given substitution. Essentially, this created 

CD20 Antigen                  Rituximab-Heavy Chain                Rituximab-Light Chain
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Essentially, this created a vast library of Ritux-
imab variants. These new sequences of heavy/
light chains were constitutively fed to the trained 
machine-learning model along with the original 
sequence of CD20 antigen. The model predict-
ed log (Kd) values which further converted into 
antilog to deduce the original Kd value in nano 
Molar.  The Kd value is a standard measure of 
the binding affi  nity between an antibody and an 
antigen; lower Kd values indicate higher affi  ni-
ty(36). Figure 3, shows the top three sequenc-
es of the Rituximab that predicted the minimum 
Kd values in the ML model. The Top sequence 
showed 0.000024 nM Kd and it was considered 
and best modifi ed Antibody sequence at the 
CDR that can bind with CD20 antigen with the 
highest affi  nity. In this sequence, SER31 was 
converted to LEU31. This specifi c mutation sig-
nifi cantly increased the binding affi  nity of the an-
tibody to the CD20 antigen.

Figure 3. Top three sequences of the Rituximab 
with minimum Kd values from the ML model. 

Structure modelling 

Protein structure of Rituximab and CD20 
antigen peptide was collected from the protein 
data bank (PDB). The required modifi cation in 
the rituximab was imposed in the complex struc-
ture using SWISS Pdb viewer tool. Swiss-Pd-
bViewer is an application that provides a user 
friendly interface allowing to evaluate many pro-
teins at the same time(37). The structure was 
further simulated under physiological condition 
for 100 ns to achieve the most stable conforma-
tion. Both wild and new variant of rituximab was 

simulated for 100 ns. Various evaluation metrics 
were further computed on the simulation trajec-
tory.Root mean square deviation (RMSD)

Figure 4. Root mean square deviation (RMSD) 
for the (a) antibody (rituximab) and (b) antigen 
(CD20) for wild type and variant type in the com-
plex. 

The deviation of antigen-antibody com-
plex from the equilibrated structure achieved 
after the NVT and NPT ensemble equilibra-
tion. This deviation showed the change in the 
conformational space of the antigen-antibody 
complex. Root-mean-square deviation (RMSD) 
was calculated over the 100 ns for the rituximab 
(antibody) and CD20 (antigen). The RMSD is a 
metric that quantifi es the average distance be-
tween the atoms, typically the backbone atoms, 
of molecules that have been superimposed(38). 
Both antigen and antibody showed high RMSD 
during the 100 ns simulation. Here, the wild and 
variant both started with the similar pattern in 
the RMSD for antibody as shown in Figure 4 (a) 
at 0.75 nm from the initial conformation. Until 
the 40 ns of the simulation trajectory, they be-
haved similarly. However, post 40 ns, wild type 
showed a high peak of RMSD compared to vari-
ant. Moreover, after 80 ns, they re-showed the 
similar pattern of RMSD. Similarly, in antigen 
the RMSD of wild type showed the higher peak 
between 40 ns to 80 ns. Following an 80-nano-
second interval, they subsequently realign and 
attain a stable confi guration, converging at a 
distance of 0.75 nanometers, as visually rep-
resented in Figure 4 (b). Plots shown in Figure 
4, illustrate the higher deviation in the wild con-
formation of the protein compared to the vari-
ant (both for antibody and antigen). Here, the 
reference structure used for alignment was the 

a vast library of Rituximab variants. These new sequences of heavy/light chains were 

constitutively fed to the trained machine-learning model along with the original 

sequence of CD20 antigen. The model predicted log (Kd) values which further 

converted into antilog to deduce the original Kd value in nano Molar. The Kd value is 

a standard measure of the binding affinity between an antibody and an antigen; lower 

Kd values indicate higher affinity(36). Figure 3, shows the top three sequences of the 

Rituximab that predicted the minimum Kd values in the ML model. The Top sequence 

showed 0.000024 nM Kd and it was considered and best modified Antibody sequence 

at the CDR that can bind with CD20 antigen with the highest affinity. In this sequence, 

SER31 was converted to LEU31. This specific mutation significantly increased the 

binding affinity of the antibody to the CD20 antigen.

Figure 3. Top three sequences of the Rituximab with minimum Kd values from the ML 

model. 

Structure Modelling 

Protein structure of Rituximab and CD20 antigen peptide was collected from 

the protein data bank (PDB). The required modification in the rituximab was imposed 

in the complex structure using SWISS Pdb viewer tool. Swiss-PdbViewer is an 

application that provides a user friendly interface allowing to evaluate many proteins 

at the same time(37). The structure was further simulated under physiological 

condition for 100 ns to achieve the most stable conformation. Both wild and new 

variant of rituximab was simulated for 100 ns. Various evaluation metrics were further 

computed on the simulation trajectory.

Root Mean Square Deviation (RMSD)

Figure 4. Root mean square deviation (RMSD) for the (a) antibody (rituximab) and (b) 

antigen (CD20) for wild type and variant type in the complex. 

The deviation of antigen-antibody complex from the equilibrated structure

achieved after the NVT and NPT ensemble equilibration. This deviation showed the 

change in the conformational space of the antigen-antibody complex. Root-mean-

square deviation (RMSD) was calculated over the 100 ns for the rituximab (antibody) 

and CD20 (antigen). The RMSD is a metric that quantifies the average distance 

between the atoms, typically the backbone atoms, of molecules that have been 

superimposed(38). Both antigen and antibody showed high RMSD during the 100 ns 

simulation. Here, the wild and variant both started with the similar pattern in the RMSD 

for antibody as shown in Figure 4 (a) at 0.75 nm from the initial conformation. Until the 

40 ns of the simulation trajectory, they behaved similarly. However, post 40 ns, wild 

type showed a high peak of RMSD compared to variant. Moreover, after 80 ns, they 

re-showed the similar pattern of RMSD. Similarly, in antigen the RMSD of wild type 

showed the higher peak between 40 ns to 80 ns. Following an 80-nanosecond interval, 

they subsequently realign and attain a stable configuration, converging at a distance 

of 0.75 nanometers, as visually represented in Figure 4 (b). Plots shown in Figure 4,

illustrate the higher deviation in the wild conformation of the protein compared to the 

variant (both for antibody and antigen). Here, the reference structure used for 
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complete complex while the RMSD was calcu-
lated for the antigen and antibody separately.  
The plots showed that RMSD of the antibody 
and antigen behaved similarly as per their de-
viation pattern from the initial docked confor-
mation. Here, the complete complex was taken 
as reference for the alignment and RMSD was 
calculated for antibody and antigen individual-
ly. This suggest that antibody showed transla-
tion motion in the given complex. The interac-
tion site has changed to limited extent during 
the course of the simulation. This happened to 
fi nd the stronger interaction with the antigen. 
However, it is noted that va riant that designed 
in this case study has shown lower deviation 
than the wild type. This specify that if the vari-
ant antibody interact with the antigen in native 
like conformation, then the chances of forma-
tion of stable pose is higher compared to the 
wild type. Both the plots showed a jump in same 
period (40-70 ns) that indicate the disturbance 
of the conformation. However, it settled in the 
later phase to achieve more stability. Overall, 
this outcome provides signifi cant understanding 
into the dynamic characteristics of the Ritux-
imab-CD20 complex, highlighting the variations 
in stability and structural modifi cations between 
the original and modifi ed versions of the anti-
body. These fi ndings hold great importance in 
understanding the molecular foundation of inter-
actions between antibodies and antigens, and 
can provide assistance in developing therapeu-
tic antibodies that are more stable and effi  cient.

 Root mean square fl uctuation (RMSF)

The root mean square fl uctuation 
(RMSF) quantifi es the variation of each atom 
along the whole trajectory. Later, the root mean 
square fl uctuation (RMSF) was calculated for 
wild and variant antibody to compare the fl uctu-
ation at residue level.  The plot shown in Figure 
5, shows that both wild type and variant showed 
the similar trend of RMSF. In heavy chain of the 
wild type other than the terminal residues LYS-
129, SER-130, and SER-132 showed the high 
RMSF, crossing 0.3 nm cutoff  while LYS-129 
and SER-130 also showed the similar RMSF 

pattern in variant type. However, none of these 
residues were part of the CDR region. In con-
trast, light chain showed more stability and only 
terminal residues showed the high RMSF while 
rest of the residues were settled in their con-
formation. The graphical representation of the 
RMSF is shown in the Figure 5. As observed 
from the plots that both wild and variant type be-
haved similarly in the simulation and common 
residues showed the jump in the RMSF.

Figure 5. RMSF plots of (a) heavy chain and (b) 
light chain for both wild and variant types. X axis 
shows the residue number and Y axis shows the 
RMSF in nm scale. 

Free energy landscape (FEL)

Free energy landscapes are commonly 
used in computational chemistry and biophys-
ics to represent and simulate the process of 
protein folding, ligand-receptor interaction, en-
zyme mechanisms, and other dynamic molec-
ular processes. They off er valuable information 
regarding the thermodynamics and kinetics of 
these processes(39). Here, the top two principal 
components of the conformational motion were 
calculated to represent the maximum deviation. 
This presents the movement of the protein along 
the principal component to achieve an energeti-
cally stable state. Moreover, it also presents the 
variation in the structure of the protein that sig-
nifi es the overall stability of the molecule. The 
antibody antigen complexes (wild and variant) 
was simulated for 100 ns and their principal 
components were detected, the motion and the 
energy term were calculated as shown in the 3D 
energy landscape in Figure 6. The free energy 
was shown in relative scale where the most sta-
ble state or the minimum free energy state was 
considered as reference. Therefore, the energy 

Figure 5. RMSF plots of (a) heavy chain and (b) light chain for both wild and variant 

types. X axis shows the residue number and Y axis shows the RMSF in nm scale. 

Free Energy Landscape (FEL)

Free energy landscapes are commonly used in computational chemistry and 

biophysics to represent and simulate the process of protein folding, ligand-receptor 

interaction, enzyme mechanisms, and other dynamic molecular processes. They offer 

valuable information regarding the thermodynamics and kinetics of these 

processes(39). Here, the top two principal components of the conformational motion 

were calculated to represent the maximum deviation. This presents the movement of 

the protein along the principal component to achieve an energetically stable state. 

Moreover, it also presents the variation in the structure of the protein that signifies the 

overall stability of the molecule. The antibody antigen complexes (wild and variant) 

was simulated for 100 ns and their principal components were detected, the motion 

and the energy term were calculated as shown in the 3D energy landscape in Figure

6. The free energy was shown in relative scale where the most stable state or the 

minimum free energy state was considered as reference. Therefore, the energy scale 

started from 0 (minimum) and went to high scale. Moreover, in the funnel shape plot, 

it is shown that wild type has multiple basins while the variant has single basin. These 

basins are minimum energy state that was achieved for the given complex. It is 

noteworthy that going from one basin to another basin there are energy barrier that 
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scale started from 0 (minimum) and went to high 
scale. Moreover, in the funnel shape plot, it is 
shown that wild type has multiple basins while 
the variant has single basin. These basins are 
minimum energy state that was achieved for the 
given complex. It is noteworthy that going from 
one basin to another basin there are energy bar-
rier that needs to be crossed. Navigating these 
energy barriers presents a formidable challenge 
within the conformational space, and there is 
a signifi cant likelihood of a given structure be-
coming trapped in these local energy minima. 
As shown in the Figure 6, that variant has no 
energy barrier in their its free energy landscape 
and this showed that complex has high possi-
bility to reach the global minima without getting 
trapped in the local minima. On the other hand, 
wild type has energy barriers and there is more 
chance that conformation would trap in the local 
minima and will not be eligible to reach glob-
al minima. It is also been seen that basins in 
the wild type have not the similar energy states 
conformation as depicted by the colour gradient 
and the depth of the basin. In conclusion, this 
investigation shows the signifi cance of studying 
the energy landscapes of molecular complex-
es. The outcome is that the mutated version of 
the antibody-antigen complex is more prone to 
achieving a stable structure with ease, without 
the obstruction of energy obstacles, in contrast 
to the original form. The understanding acquired 
from this observation is extremely helpful in the 
realm of drug design and protein engineering, 
as it pertains to the crucial aspects of molecular 
interactions’ stability and effi  ciency.

Figure 6. Free energy landscape of the anti-
gen (CD20) and antibody (rituximab) complex 
for 100 ns simulation calculated over fi rst two 
principal components for (a) wild type and (b) 
variant type.

Gibbs binding free energy (∆G)

MM/PBSA and MM/GBSA have been 
extensively employed in biomolecular studies, 
particularly in the investigation of protein fold-
ing, protein−ligand binding, and protein−pro-
tein interactions(40). Here, binding free energy 
of the antigen-antibody complex was calcu-
lated for the last 20 ns of the simulation. MM/
GBSA (Molecular mechanics with generalised 
Born and surface area solvation) method was 
employed to calculate the binding free energy. 
This energy has multiple energetic terms that in-
cludes gas and solvation term of gibbs energy. 
Gas energy term has Van der Waal and electro-
static energy components. However, solvation 
term has both polar and non-polar components. 
Average values for all the terms were calculated 
van der Waal showed the most favourable ener-
gy (-63.07 kcal/mole) for the wild while for vari-
ant electrostatic component dominated (-70.55 
kcal/mole). Polar solvation energy was positive 
in both the cases, wild has 50.08 kcal/mole while 
for variant it is 129.57 kcal/mole. Overall, the av-
erage binding free energy for wild and variant 
was comparative but variant showed more sta-
bility with -45.44 kcal/mole and the wild type had 
-37.66 kcal/mole. This showed that variation in 
the antibody provided stronger interaction with 
the antigen that further resulted in the more sta-
ble complex formation. Figure 7, showed the 
binding free energies for wild and variant types 
with their various energetic components. 

Figure 7. Binding free energy calculated using 
MM/GBSA techniques for (a) wild type and (b) 
variant type. 

Further, the binding free energy was 
recorded for each frame, 20 frames were gen-
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erated for the last 20 ns. Energy in each of the 
frame is shown in Figure 8. The energy was sta-
ble for the variant the standard deviation was 
6.21. In the wild type the energy continuously 
fallen and reached to minimum at 100 ns. 

Figure 8. Binding free energy of each frame for 
(a) wild type and (b) variant type for the ritux-
imab and CD20 complex over last 20 ns simu-
lation trajectory.

RMSD and RMSF shown earlier in the 
calculation conveyed that the conformation 
of wild and variant type showed similar trend. 
However, variant had relatively more stable 
conformational behaviour during the simulation 
trajectory. This showed that more stability was 
attained in the complex after the change im-
posed in the rituximab sequence. This change 
was guided by the ML method demonstrated 
in this study. Later, it was also showed that the 
variant had similar level of residual fluctuation. 
The variant had favourable binding free ener-
gy calculated from the MM/GBSA. Overall, the 
variant of rituximab showed stronger binding 
with the antigen than the wild type. 

Discussion

The therapeutic application of mono-
clonal antibodies (mAbs) is among the most 
promising areas within the domain of immu-
notherapy. Immunogenicity is one of the most 
significant factors that can limit the therapeutic 
and diagnostic applications of mAbs. The ad-
vancement of biological therapeutics has been 

greatly accelerated by the integration of com-
putational technologies with high-throughput 
technology(41–43). Numerous cases of in silico 
vaccine design have been successful, includ-
ing the vaccine design initiated by Correia et al. 
through computational protein design(44). They 
used in-silico methods to design small, thermal-
ly and conformationally stable protein scaffolds. 
Additional testing has shown that these protein 
scaffolds successfully imitate the structure of 
the viral epitope and stimulate powerful antibod-
ies that can neutralise the virus.

The present study demonstrated the 
conceptualization and construction of a resilient 
machine learning framework for forecasting the 
antigen-antibody binding affinity. The conjoint 
triad encoder method demonstrated the highest 
degree of accuracy, as evidenced by its correla-
tion coefficient of 0.78. An additional applica-
tion of the method was to illustrate its efficacy 
on rituximab through the generation of original 
sequences that targeted the CDR region. Rit-
uximab induces apoptosis, complement acti-
vation, and antibody-dependent cell-mediated 
cytotoxicity by binding to the CD20 marker ex-
pressed on B lymphocytes (Miranda-Hernández 
MP, López-Morales CA, Ramírez-Ibáñez ND, 
Piña-Lara N, Pérez NO, Molina-Pérez A, et al. 
Assessment of physicochemical properties of 
rituximab related to its immunomodulatory ac-
tivity(45, 46). The study identified the optimal 
sequence exhibiting the greatest affinity for 
the CD20 antigen. A molecular dynamics (MD) 
simulation study was conducted to investigate 
the binding characteristics and structure of the 
variant rituximab. The RMSD of this variant was 
lower than that of the wild type. This indicates 
that the probability of stable pose formation is 
greater for variant antibodies that interact with 
the antigen in a native-like conformation, as op-
posed to the wild type. The binding free ener-
gy of the antigen-antibody complex was -45.44 
kcal/mole for the Rituximab variant and -37.66 
kcal/mole for the wild type. This showed that 
variation in the antibody provided stronger in-
teraction with the antigen that further resulted 
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in the more stable complex formation. A free 
energy landscape (FEL) was calculated by util-
ising the initial two principal components (PC1 
and PC2). In contrast to the wild type, which 
possesses three minimum energy basins, this 
variant displayed only one. Thus, it was demon-
strated that the antibody variant-produced com-
plex is more capable of achieving global mini-
ma. In the machine learning model, the variant 
that was generated and justified demonstrated 
a higher level of stability and affinity with the an-
tigen. Thus, the methodology that was present-
ed in the study has the potential to be utilised 
in the design of antibodies in order to produce 
therapeutic antibodies that are more effective.

Conclusion

This study showed the design and de-
velopment of a robust machine learning model 
to predict the binding affinity between antigen 
and antibody. Conjoint triad encoder method 
showed the highest accuracy with 0.78 correla-
tion coefficient. The method was further used to 
demonstrate its application on rituximab by gen-
erating novel sequences by targeting the CDR 
region. The study detected the best sequence 
that showed the highest affinity for the CD20 an-
tigen. The structure of the variant rituximab was 
modelled and the binding characteristics was 
explored in MD simulation study. The variant 
generated and justified in ML model showed the 
higher stability and affinity with the antigen. The 
method presented in the study has potential to 
be used in antibody design to generate more ef-
ficacious therapeutic antibody.
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