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Abstract

 Tobacco smoking poses significant 
health risks due to its carcinogenic and toxic 
components. While the broad effects of smok-
ing are well-documented, the specific genomic 
consequences on different body tissues remain 
less understood. This study seeks to address 
this knowledge gap by systematically analyzing 
the genetic alterations in blood and airway ep-
ithelium tissues of smokers, offering a clearer 
understanding of the molecular pathways im-
pacted by tobacco exposure. In this study, we 
employed microarray-based gene expression 
analysis to investigate the genomic changes 
in smokers. Employing gene expression data-
sets (E-MTAB-5279 and E-GEOD-10006) from 
smokers and non-smokers, we conducted a de-
tailed analysis to identify differentially expressed 
genes (DEGs) in blood and epithelial tissues. 
Our methodology included robust multi-array 
average processing, Limma package analysis 
for DEGs, and pathway enrichment analysis 
using the KEGG database and Gene Ontology 
(GO) tools. The analysis revealed 584 DEGs in 
the blood dataset, with 411 downregulated and 
173 upregulated genes, highlighting pathways 
related to thermogenesis, Parkinson’s disease, 
Alzheimer’s disease, and Huntington’s disease. 
Key genes such as ATP5C1, ATP5J, COX6C, 

COX7B, COX7C, NDUFA4, NDUFA5, NDUFB3, 
NDUFS4, UQCRB, and UQCRQ were notably 
enriched. In the airway epithelium dataset, 147 
DEGs were identified, including 101 downreg-
ulated and 46 upregulated genes, with a sig-
nificant enrichment in the ribosome pathway, 
particularly in genes like RPL23. In the airway 
epithelium dataset, we identified 147 differen-
tially expressed genes (DEGs), consisting of 
101 downregulated and 46 upregulated genes. 
Notably, there was a pronounced enrichment in 
the ribosomal pathway, exemplified by genes 
such as RPL23. This finding highlights a critical 
cellular response to tobacco smoke, emphasiz-
ing alterations in protein synthesis mechanisms 
within the epithelial tissues. In conclusion, our 
findings provide a comprehensive view of the 
genomic changes induced by tobacco smoke in 
different tissues, enhancing our understanding 
of smoking-related pathologies and potentially 
guiding future therapeutic strategies. This re-
search not only fills a crucial gap in the under-
standing of tobacco’s genomic impact but also 
lays the groundwork for improved public health 
interventions.

Keywords: Smoking, Gene Expression, Pro-
tein-Protein network, gene enrichment.
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Introduction

 Tobacco smoke is a complex mixture 
containing more than 5,000 compounds that are 
the main carcinogenic and toxicity risk factors 
(1). Approximately 1.3 million people are affect-
ed by tobacco smoke worldwide. Unfortunately, 
tobacco smoke and its contents are dangerous 
to the health of people who inhale it; this leads 
to 5 million annual deaths per year (1-6). The 
substance contains many carcinogens and over 
100 tumor promoters (7). Once combusted, to-
bacco releases aromatic polycyclic hydrocar-
bon compounds that are laced with carcinogens 
(8). These dangerous products cause a variety 
of cancers, including oral cancer, lung cancer, 
and liver cancer (5). Continued abuse of the 
substance, while undergoing cancer treatment, 
is another problem because it reduces the ef-
fectiveness of the therapeutic process that facil-
itates healing (9, 10). 

 With a proper understanding of the 
components and causes of dreadful diseases, 
such as cancer, it can be possible to easily con-
trol them. Past research has shown that contin-
ued inhalation of tobacco smoke inflicts serious 
injuries on the epithelial cells of the oral mucosa 
that function  to physiologically block outside 
stimuli (11). Additionally, tobacco smoke causes 
genetic disruption in that it prevents the expres-
sion of the genes in epithelial cells and tissues 
(12). Experimental findings have reported allelic 
loss in epithelial cells among most smokers (10-
11). Picket at al. confirmed this claim in his em-
pirical research, which showed that exposure to 
smoke from 10 different cigarettes leads to an 
alteration of 21 genes. Spira et al. (13) also used 
transcriptome profiling and found that smoking 
induces the formation of genes that participate 
in xenobiotic metabolism and stress among 
the epithelial cells of the airwave. In theoretical 
terms, it is possible to develop a transcriptome 
bio-marker to purposely offer protection against 
the effects of tobacco smoke based on identi-
fying its carcinogenic effects (12). In this study, 
we obtained microarray data (E-MTAB-5279) 
and (E-GEOD-10006) to identify the differen-
tially expressed genes (DEGs) in human blood 

and epithelial tissue in a cohort of smokers and 
non-smokers. We constructed a protein protein 
interaction (PPI) network and performed a path-
way enrichment analysis with the aim of eval-
uating the transcriptional profiling of smokers’ 
blood vs. smokers’ epithelium cells.

Materials and Methods 

 We obtained gene expression datasets 
(E-MTAB-5279, E-GEOD-10006) from the NCBI 
Gene Expression Omnibus database, which can 
be retrieved from http://www.ncbi.nlm.nih.gov/
geo/. The E-MTAB-5279 dataset contains tran-
scriptional profiling data of blood from 30 smok-
ers and 29 nonsmokers. The E-GEOD-10006 
human airway epithelium dataset contains 
the expression profile of 38 smokers and 22 
non-smokers. We conducted the experiments 
on the microarray platform in the Affymetrix Hu-
man Genome U133 Plus 2.0 Array (14-19). 

DEGs and data processing 

 A Robust Multi-array Average (RMA) 
is an algorithm, which, when expressed in the 
R affy package, shows how the raw data were 
transformed into values using three processes: 
correction of the background, quantile normal-
ization, and summarization of the probe (20, 21). 
The Limma package for analyzing gene expres-
sion data and t-tests further helped to evaluate 
the DEGs between smokers and non-smokers in 
R language. The method proposed by Benjamini 
and Hochberg was used to adjust the p-values 
in the false discovery rate system (FDR) (22). 
|The log2FC| >0.5 cutoff value was considered 
for the DEGs screening. Signal pathway enrich-
ment and gene ontology (GO) (http://geneontol-
ogy.org/) were used to analyze the DEGs (23), 
and David Panther (http://www.pantherdb.org/) 
(24) was the specialist in charge of the GO as-
sessment and analysis as well as the analysis 
of the molecular functions, cellular components, 
and biological processes of the DEGs from the 
online database. Signaling pathway enrichment 
analysis was performed based on the method 
described at https://string-db.org/ of the KEGG 
pathways (23, 25).
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Analysis of the modules and construction of 
the PPI network

 The STRING database provided a re-
pository location for searching the proteins that 
were used to identified the DEGs of the trans-
lated protein interactions (http://www.string-db.
org/) (25). A visualized PPI network was then 
constructed using Cytoscape software (http:// 
www.cytoscape.org/)  (26). CFinder (http://
www.cfinder.org/) was used to perform the clus-
ter analysis of the PPI network.  CFinder further 
provided a strategy for using the Clique Perco-
lation Method algorithm to identify the network 
communities that are associated with k-clique 
(27). The complete sub-graphs have a size of 
k, and investigations on the numerical and ana-
lytical k are complete. For the k-cliques, values 
>10 are the cut-off criterion, while lower limits 
meet the cut-off.

Results and Discussion

Table 1: Top 5 Key Differentially Expressed 
Genes Identified in Blood and Airway Epithelial 
Tissue Datasets.

The STRING database provided a repository location for searching the 

proteins that were used to identified the DEGs of the translated protein interactions 

(http://www.string-db.org/) (25). A visualized PPI network was then constructed using 

Cytoscape software (http:// www.cytoscape.org/)  (26). CFinder 

(http://www.cfinder.org/) was used to perform the cluster analysis of the PPI network.  

CFinder further provided a strategy for using the Clique Percolation Method algorithm 

to identify the network communities that are associated with k-clique (27). The 

complete sub-graphs have a size of k, and investigations on the numerical and 

analytical k are complete. For the k-cliques, values >10 are the cut-off criterion, while 

lower limits meet the cut-off. 

Results and Discussion 

Table 1: Top 5 Key Differentially Expressed Genes Identified in Blood and Airway 

Epithelial Tissue Datasets. 

Identification of the DEGs 

In the E-MTAB-5279 dataset, composed of 411 downgraded genes and 173 

unregulated genes, a total of 584 DEGs were screened, as shown through heatmap 

(Figure:1B). In the E-GEOD-10006 dataset, we further screened 147 DEGs, which 

consisted of 101 downregulated and 46 upregulated genes (Figure:1B). The top 5 

most significant genes are shown in Table 1.  

    
 
 
 
 
 
 
Tissue 

 
Down-
regulated 
genes 

GLOD5 -1.0197872 0.000756157 
KIF18B -0.869690246 0.000276436 
FAM3B -0.862153434 0.007747086 
KIF11 -0.779838322 0.009182435 
TRIM6 -0.774527115 0.000357933 

 
Up-
regulated 
genes 

NKX3-1 0.754500681 0.033152755 
KANSL1-AS1 0.773544043 0.013858872 
XIST 0.802600214 0.459222892 
KANSL1-AS1 0.829954953 0.006201343 
HLA-DQA1 0.834636602 0.30136265 

DEGs gene ontology analysis  

The GO analysis classified the DEGs into three groups: biological processes, 

molecular functions, and biological processes. In the E-MTAB-5279 dataset, the 

upregulated genes were highly involved in the MHC class II protein complex 

(GO:0042613) (Figure:2). Molecular function (GO:0003674) and binding 

(GO:0005488) molecular function were highly involved in the downregulated genes, 

as seen in Figure (2). For the E-GEOD-10006 dataset, the MHC protein complex 

(GO:0042611) and the MHC class II protein complex (GO:0042613) were enriched 

for the upregulated genes. The downregulated genes were mainly involved in 

intracellular processes (GO:0005622) (Figure:2). 

Analysis of signaling pathway enrichment  

Based on the KEGG databases, no significant pathway enrichments were 

observed in the KEGG pathways of the upregulated genes in the E-MTAB-5279 

dataset. In that dataset, the top 5 enriched pathways of the downregulated genes 

were related to ribosome pathways, Parkinson's disease, thermogenesis, oxidative 

phosphorylation, and non-alcoholic fatty liver disease (NAFLD), as seen in Table 2. 

In the E-GEOD-10006 dataset, no significant pathway enrichments were observed in 

the KEGG pathways in the upregulated and downregulated genes. 

Table 2: The Top 5 Pathways Enriched Among Downregulated Genes in Blood 

Samples. 

#term ID term 
description 

observed 
gene count 

background 
gene count 

false 
discovery 

rate 
matching proteins in your network (labels) 

hsa03010 Ribosome 16 130 3.81E-06 MRPL1,MRPL13,MRPL3,MRPL35,MRPS14,MRPS18C,RPL22L1,R  
RPL31,RPL34,RPL36A,RPL7,RPL9,RPS27L,RPS7,RSL24D  

hsa05012 Parkinson's 
disease 13 142 0.00086 ATP5C1,ATP5J,CASP3,COX6C,COX7B,COX7C,NDUFA4,NDUFA5,  

NDUFS4,PRKACB,UQCRB,UQCRQ 

hsa00190 Oxidative 
phosphorylation 12 131 0.0013 ATP5C1,ATP5I,ATP5J,COX6C,COX7B,COX7C,NDUFA4,NDUFA5,N  

NDUFS4,UQCRB,UQCRQ 

Table Gene logFC P.Value 
 
 
 
 
 
Blood 

 
Down-
regulated 
genes 

HLA-DQA1 -2.014157659 0.053050403 
CALHM6 -1.259741283 3.39517E-06 
RPL22L1 -1.156703989 5.55541E-06 
MRPL47 -1.048886686 1.61243E-06 
KLRF1 -1.038081556 1.81444E-05 

 
Up-
regulated 
genes 

HLA-DQA1 1.307354875 0.110136451 
TRMT2B 1.32735461 3.86571E-06 
HLA-DRB4 1.345821935 0.082936296 
PAPOLA 1.399027932 1.01949E-05 
LRRN3 1.668079326 3.61436E-08 

Identification of the DEGs

 In the E-MTAB-5279 dataset, composed 
of 411 downgraded genes and 173 unregulat-
ed genes, a total of 584 DEGs were screened, 
as shown through heatmap (Figure:1B). In the 
E-GEOD-10006 dataset, we further screened 
147 DEGs, which consisted of 101 downreg-
ulated and 46 upregulated genes (Figure:1B). 
The top 5 most significant genes are shown in 
Table 1. 

DEGs gene ontology analysis 

 The GO analysis classified the DEGs 
into three groups: biological processes, mo-
lecular functions, and biological processes. 
In the E-MTAB-5279 dataset, the upregulated 
genes were highly involved in the MHC class 
II protein complex (GO:0042613) (Figure:2). 
Molecular function (GO:0003674) and binding 
(GO:0005488) molecular function were highly 
involved in the downregulated genes, as seen in 
Figure (2). For the E-GEOD-10006 dataset, the 
MHC protein complex (GO:0042611) and the 
MHC class II protein complex (GO:0042613) 
were enriched for the upregulated genes. The 
downregulated genes were mainly involved in 
intracellular processes (GO:0005622) (Fig-
ure:2).

Analysis of signaling pathway enrichment 

 Based on the KEGG databases, no sig-
nificant pathway enrichments were observed in 
the KEGG pathways of the upregulated genes 
in the E-MTAB-5279 dataset. In that dataset, 
the top 5 enriched pathways of the downregu-
lated genes were related to ribosome pathways, 
Parkinson’s disease, thermogenesis, oxidative 
phosphorylation, and non-alcoholic fatty liver 
disease (NAFLD), as seen in Table 2. In the 
E-GEOD-10006 dataset, no significant pathway 
enrichments were observed in the KEGG path-
ways in the upregulated and downregulated 
genes.
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Table 2: The Top 5 Pathways Enriched Among 
Downregulated Genes in Blood Samples.

#term 
ID term description

ob-
served 
gene 
count

back-
ground 
gene 
count

false 
discovery 

rate
matching proteins in your network (labels)

hsa03010 Ribosome 16 130 3.81E-06
MRPL1,MRPL13,MRPL3,MRPL35,M-

RPS14,MRPS18C,RPL22L1,RPL26L1,
RPL31,RPL34,RPL36A,RPL7,RPL9,RPS-

27L,RPS7,RSL24D1

hsa05012 Parkinson’s 
disease 13 142 0.00086

ATP5C1,ATP5J,CASP3,COX6C,COX-
7B,COX7C,NDUFA4,NDUFA5,NDUFB3,

NDUFS4,PRKACB,UQCRB,UQCRQ

hsa00190
Oxidative 

phosphory-
lation

12 131 0.0013
ATP5C1,ATP5I,ATP5J,COX6C,COX-

7B,COX7C,NDUFA4,NDUFA5,NDUFB3,
NDUFS4,UQCRB,UQCRQ

hsa04714 Thermogen-
esis 14 228 0.0083

ATP5C1,ATP5I,ATP5J,COX16,COX-
6C,COX7B,COX7C,NDUFA4,NDUFA5,

NDUFB3,NDUFS4,PRKAC-
B,UQCRB,UQCRQ

hsa04932
Non-alco-
holic fatty 

liver disease 
(NAFLD)

11 149 0.0083
CASP3,COX6C,COX7B,COX7C,FASL-

G,NDUFA4,NDUFA5,NDUFB3,
NDUFS4,UQCRB,UQCRQ

Figure: 1. A. Juxtaposes heatmaps of gene 
expression profiles from blood tissue (right) 
against those from airway epithelium of smok-
ers and nonsmokers (left), revealing the genetic 
contrasts influenced by smoking. B.  volcano 
plots further delineate these differences, plotting 
significant transcriptional changes in blood tis-
sue (right) against changes in smokers’ airway 
tissue (left), visually quantifying the impact of 
smoking at the molecular level. Together, these 
graphical representations provide a concise yet 
comprehensive overview of the smoking-relat-
ed transcriptional alterations across two distinct 
tissue types.

Figure: 2. A. The spectrum of DEG activities in 
blood, categorized into cellular components, 
biological processes, and molecular functions, 
highlighting the predominant areas of activity. B. 
multi-dimensional analysis of DEG, combining 
Gene Ontology domains with KEGG pathway 
associations to depict a nuanced landscape of 
suppressed gene functions and pathways in air-
way epithelium.

Figure: 3. A. The Protein-Protein Interaction 
(PPI) network in blood, depicting a dense web of 
interactions that suggest a highly interconnect-
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ed system. B. The PPI network in tissue, with a 
more dispersed pattern indicating fewer or more 
selective interactions. 

Analysis of the PPI network and modules 

 In the E-MTAB-5279 dataset, the PPI 
network complex of DEGs, contained 1714 
edges and 517 nodes. In the dataset labeled 
E-GEOD-10006, a total of 196 nodes and 
2,417 edges were identified, as illustrated in 
Figure 3. The application of CFinder revealed 
a k-cliques value exceeding 10. Regarding 
the E-MTAB-5279 dataset, the developed Pro-
tein-Protein Interaction (PPI) network resulted 
in the formation of four distinct modules. Sub-
sequent pathway enrichment analysis revealed 
that module M0 was comprised of 75 edges 
and 13 nodes, whereas module M2 included 21 
nodes and 174 edges. Module M3 was made 
up of 12 nodes and 65 edges, and module M4 
encompassed 21 nodes and 168 edges. In the 
E-GEOD-10006 dataset, two modules were 
obtained. The pathway enrichment analysis 
showed that M0 consisted of 110 edges and 17 
nodes and M1 consisted of 70 nodes and 2207 
edges (Figures 4 and 5).

Figure: 5. Top clusters from a Protein-Protein In-
teraction (PPI) network in airway epithelial cells. 
Each node represents a protein, with the con-
necting lines indicating the interactions between 
them, thus mapping the complex biological in-
terplay within the airway epithelium.

Hub identification
GO annotation of the cluster genes

 From the significant k-cliques mod-
ules obtained from the smokers’ blood 
(E-MTAB-5279) and the smokers’ epithelium 
(E-GEOD-10006) datasets, we identified GO 
annotation modules, such as biological pro-
cesses, cellular components, molecular func-
tions, and KEGG pathways (Figure 6A). For the 
smokers’ blood dataset, in the M0 module, the 
significant biological process is the mitochondri-
al electron transport, cytochrome c to oxygen 
(GO:0006123). For the smokers’ epithelium 
dataset, in the M1 module. The significant bio-
logical process is the kinetochore organization 
(GO:0051383) (Figure 6B). 

Figure: 6. GO term annotations of top clusters 
in smokers’ blood and airway epithelium tissue 
DEGs.

Figure: 4. The top four clusters (from Blood tis-
sue PPI network) within a Protein-Protein Inter-
action network derived from blood, where each 
cluster represents a distinct assembly of interre-
lated proteins, illustrating the network’s modular 
organization.
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Discussion 

 Cigarette smoke is linked to a variety of 
severe diseases because of its negative effects 
on human health (28). Technologies, such as 
molecular biomarkers, play instrumental roles in 
improving a diagnosis by helping to predict ther-
apeutic behaviors. Microarray is an important 
diagnostic tool; it helps to probe the expression 
levels of a myriad of genes in the human ge-
nome. This technique is widely used to explore 
the biomarkers of diseases (29-31). 

 Additionally, one can clearly under-
stand the effects of smoking by identifying and 
comparing the DEGs between smokers and 
non-smokers. In this study, we used compu-
tational methods to analyze gene expression 
data with the aim of determining transcription 
profiling of blood from smokers and non- smok-
ers (E-MTAB-5279 dataset) vs. human air-
way epithelium of smokers and non-smokers 
(E-GEOD-10006 dataset). In the blood dataset,  
584 differentially expressed genes (DEGs) were 
identified, comprising 411 genes that showed 
decreased expression and 173 that were more 
highly expressed. Notably, genes such as AT-
P5C1, ATP5J, COX6C, COX7B, COX7C, ND-
UFA4, NDUFA5, NDUFB3, NDUFS4, UQCRB, 
and UQCRQ predominantly featured in path-
ways associated with thermogenesis, as well 
as in the pathogenesis of Parkinson’s, Hunting-
ton’s, and Alzheimer’s diseases. In a separate 
dataset examining human airway epithelium, 
147 DEGs were identified, including 101 genes 
with reduced expression and 46 with increased 
expression. Of these, RPL23 was primarily in-
volved in the ribosome pathway. Gene Ontology 
(GO) annotations were employed in both data-
sets to categorize biological processes, cellular 
components, molecular functions, and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways. Specifically, in the smokers’ blood 
dataset, the M0 module predominantly repre-
sented biological processes like mitochondrial 
electron transport from cytochrome c to oxygen 
(GO:0006123). Exposure to tobacco smoke is a 
high risk factor that affects mitochondrial DNA 

due to oxidative damage (32, 33), leading to el-
evated levels of reactive oxygen species (ROS) 
with the use of mitochondrial enhancement 
treatment (34). Cytochrome c oxidase has been 
reported to be dramatically inhibited with the in-
crease in carbon dioxide concentration (35).

 For the smokers’ epithelium dataset, in 
the M1 module, the significant biological pro-
cess is kinetochore organization (GO:0051383). 
Cancers are highly associated with aberrant ki-
netochore attachment (36, 37).

 In summary, after analyzing the human 
airway epithelium and blood datasets, we iden-
tified the highly significant pathways that are 
correlated with biological processes in smokers, 
which are mainly associated with epithelial tis-
sue cancer and blood toxicity.
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