Current Trends in Biotechnology and Pharmacy 1191 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

Computational Analysis of Alginate Lyases Produced by Different Microorganisms

P. Ramya, R. Aanandhalakshmi and B. Vanavil*

Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamil Nadu, India *Corresponding author: b.vanavil@klu.ac.in

Abstract

Alginates are considered as the major structural material present in the cell-wall of brown seaweeds and are produced by bacterial species like Azotobacter and Pseudomonas. Alginate lyase depolymerizes alginate into alginate oligosaccharides. Alginate lyase (AL) can be classified into two groups such as G block and M block-specific lyase as well as endolytic and exolytic enzymes based on their substrate specificities and mode of action respectively. Oligosaccharides derived from alginate have innumerable biological activities including immune regulation, anticoagulation, anti-oxidant, anti-cancer and health-promoting activities. In the present study, in silico characterization of the different reported alginate lyases was performed. A total of 50 protein sequences of alginate lyase produced by different microorganisms were retrieved from UniProt database and characterized. Multiple sequence alignment was executed using Clustal Omega. ProtParam tool was used to evaluate physicochemical parameters analyses. Phylogenetic tree was constructed by Neighbor-Joining method using MEGA-X. Motif analysis of alginate lyase sequences was carried out by MEME server. 45 structures of alginate lyase were modelled using SWISS-

MODEL. Multiple sequence alignment validates that sequences are highly variable among various alginate lyases reported in different species. Alginate lyase from different species possesses different molecular weights with amino acid residues ranging from 320 to 1059. The pl ranged between 4.42 and 9.59. The variation within these alginate lyases along with other physicochemical parameters was also examined. The active site for the different reported alginate lyases were predicted through CASTp server.

Keywords: Alginate Lyase, Multiple Sequence Alignment, Phylogenetic Analysis, Motif, Homology Modeling, CASTp

Introduction

Alginate is made up of monomeric units, β -D-mannuronate (M) and its C5 epimer α -Lguluronate (G) linked by 1, 4-O-glycosidic bonds. Alginate can be classified into poly- β -D-mannuronate (polyM), poly- α -L-guluronate (polyG) and heteropolymeric regions (1). Alginate lyases are enzymes that use the β -elimination reaction for the breakdown of alginate and generate unsaturated alginate oligosaccharides (2, 3), G block-specific lyase

Current Trends in Biotechnology and Pharmacy Vol. 17(Supplementary issue - 3B) 1191-1207, September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

and M block-specific lyase are two classes of alginate lyases. Few enzymes have catalytic activity for both polyM and polyG (4). Alginate is a major structural material present in the cell-wall of brown seaweeds or macroalgae and is produced by bacterial species like Pseudomonas and Azotobacter (5). In recent years, much attention has been focused on alginate lyase due to biological activities and wide range of applications. Alginate lyases can be isolated from different sources, including marine algae (6), marine mollusks, marine and terrestrial bacteria. Some have been isolated from viruses and fungi (7,8). Based on the mode of action, alginate lyase can be classified into endolytic and exolytic alginate lyase. Endolytic alginate lyase can degrade alginate by cleaving glycosidic bonds and produce unsaturated oligosaccharides (disaccharides, trisaccharides, and tetrasaccharides) and exolytic alginate lyase can degrade oligosaccharides into monosaccharides (9). Alginate lyase has applications agriculture. numerous in pharmaceuticals and food industries. This enzyme plays a key role in the production of oligosaccharides from alginate and the structure determination of alginate (10). Alginate oligosaccharides (AOs) have been reported to exhibit prebiotic, antioxidant, antitumor, immune-stimulatory, antihypertensive, and antidiabetic activities. AOs functions as plant growth promoter and helps in enhancing the stress and drought tolerance (8). Alginate lyase is used in degradation of *Pseudomonas* aeruginosa biofilm. (11) and alginate-derived oligosaccharides are used as a therapy for cystic fibrosis by enhancing antibiotic effect on mucoid Pseudomonas aeruginosa (11). Further, these enzymes are employed biorefinery of brown seaweeds. Concerning the industrial and medical importance of this enzyme, the present study was focused on exploring the characteristic features and active site residues of different reported alginate lyase using computational tools.

Computational Tools and Methods

Retrieval of alginate lyase sequences

FASTA format of amino acid sequences of different 50 alginate lyases produced by different microorganisms was retrieved from the UniProt database.

Multiple sequence alignment of alginate lyases

FASTA sequences of different alginate lyases retrieved were aligned using the Clustal Omega.

Phylogenetic analysis of alginate lyases

By first aligning the sequences using ClustalW and then making further predictions using the Neighbour Joining method (NJ), the phylogenetic analysis of the recovered alginate lyase sequences was performed using the MEGA software (12).

Physicochemical parameters of alginate lyases

То estimate the physicochemical parameters of the retrieved alginate lyase sequences, ProtParam was employed (13). The physicochemical properties of the retrieved alginate lyase sequences such as theoretical pl, molecular weight, instability index, amino acid composition, Grand Average of Hydropathicity (GRAVY), and Aliphatic Index (14, 15)] were evaluated.

Motif analysis of alginate lyases

Distribution of the motif in alginate lyase sequences was analysed using MEME server. The sequences were compared and functional analysis was done using protein BLAST (BLASTp) (16, 17).

Homology modeling of alginate lyase structures

The annotated 3D protein structure models can be obtained in the SWISS-MODEL repository database. Crystal structures of five

1192

Current Trends in Biotechnology and Pharmacy Vol. 17(Supplementary issue - 3B) 1191-1207, September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

alginate lyase sequences (with accession number A0A2D0ADJ9, A0A084C6X8. A0A086C1H4, Q9KWU1 and O25075) were SWISS-MODEL available in repository. Structures were modelled for rest of the forty five alginate lyase sequences using homology modelling through SWISS-MODEL server (18). Ramachandran plot analysis was employed to assess the model's quality.

Prediction of active sites for reported alginate lyases

Computed Atlas of Surface Topography of Proteins (CASTp) web server, was used to predict the tertiary structure. It aids in identifying and measuring protein surface pockets and inner gaps (19). It was used to predict the active sites of reported alginate lyase (20, 21). The protein structures were analyzed using CASTp server. The surface area of pockets and amino acids present in the pocket were analyzed.

Results and Discussion

Different alginate lyases along with the accession number for which FASTA sequences were retrieved from the UniProt database are mentioned in Table 1. Multiple sequence alignment, phylogenetic tree construction, and motif analysis were performed. Further the physiochemical parameters of the fifty alginate lyase sequences were predicted using various bioinformatics tools.

S. No	Source Organism	Accession number	Rama chandran favoured region(%)	Number of Pockets	Surface Area of Pockets	Amino acids in Pockets
1	Pseudomonas nitroreducens	A0A2D0ADJ9	-	45	504.799	SER68, LYS69, TYR70, ARG77, PHE88, ARG89, ILE92, THR96, GLU99, ARG100, THR142, SER145, MET146, TRP149, ASN204, HIS205, TRP208, ARG255, SER258, TYR259, ASN261, TYR262, PRO265, ASP315, ALA317, ASP318, LEU319, SER323, LYS324, ALA326, SER353, PHE354, ARG355, LEU356.
2	Pseudomonas capeferrum	A0A084C6X8	-	51	610.824	SER63, LYS64, TYR65, ARG72, LEU75, LEU77, GLU80, PHE83, ARG84, THR137, SER140, MET141, TRP144, ASN199, ILE92, HIS200, TRP203, ARG250, ALA253, TYR254, ASN256, TYR257, PRO260, ASP310, LYS312, ASP313, LEU314, SER318, LYS319, ALA321, SER348, PHE349, ARG350, LEU351.
3	Pseudomonas aeruginosa	A0A086C1H4	-	46	631.812	SER65, LYS66, TYR67, SER72, ARG74, PHE85, ARG86, ILE89, THR93, GLU96, ARG97, HIS138, THR139, SER142, SET143, TRP146, LYS197, ASN200, ASN201, HIS202, TRP205, ASN245, LYS248, ARG249, ARG252, ALA255, TYR256, ASN258, TYR259, PRO262, ASP312, THR314, ASP315, LEU316, ASN320, LYS321, ALA323, ASN349, SER350, PHE351, ARG352, LEU353,
4	Sphingomonas sp.	Q9KWU1	-	50	429.021	ARG, ASN, ASP, GLN, GLU, GLY, HIS, ILE, PRO, TRP, TYR, VAL.
5	Helicobacter pylori	O25075	-	59	2556.444	ARG26, ASP27, PHE28, LYS29, SER30, ASP32, LEU33, GLN35, LYS36, LEU37, HIS38, LEU53, ASN54, SER56, LYS57, HIS58, VAL64, ARG65, PRO67, ASP68, LYS69, THR71, PHE74, LYS75, ALA78, LEU79, TYR83, ASP83, ALA85, LEU86, GLY87, LEU89, VAL90, LYS92, TYR117, GLN18, GLU120, ASP121, ASN122, ILE123, ASN124, PHE125, TYR126, PRO128, TYR129, MET132, ALA133, TRP135, PHE136, MET153, ARG154, GLN155, TYR156, SER157, GLN158, SER159, ALA160, LEU161, THR163, ASN164, HIS165, GLY166, TRP168, GLY169, ILE170, LEU171, PHE172, ASP173, SER175, LEU178, LEU185, ASN188, ARG192, ARG213, GLY221, GLY222, PRO223, THR224, LYS225, GLY226, ILE227, LYS228, ALA231, TYR232, PHE235, LEU238, THR241, ILE242, GLU245, LEU246, GLU249, ASN293, ALA294, HIS302, TYR303, SER304, SER305, PRO306, SER307, ALA308, ASN309, GLU310, LEU311, LEU312, LYS313, GLY315, ASP316, LEU317, GLU319, ASP320, PHE322, LYS325, LEU38, PR0239,

Table 1: Active Site Prediction for Different Alginate Lyases

Computational analysis of alginate lyases produced by different microorganisms

1193

Current Trends in Biotechnology and Pharmacy 1194 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

6	Pseudomonas trivialis	A0A0R2ZU83	95.78	48	798.478	SER62, LYS63, TYR64, LYS69, ARG71, LEU74, GLU79, PHE82, ARG83, THR86, THR90, GLU93, LYS94, HIS135, THR136, SER139, MET140, TRP143, GLU194, LYS195, ASN197, ASN198, HIS199, TRP202, ASN242, LYS245, ARG249, SER252, TYR253, ASN255, TYR256, PRO259, ASP309, LYS311, ASP312, LEU313, LYS315, MET317, LYS318, ALA320, THR347, PHE348, ARG349, LEU350.		
7	Pseudomonas parafulva	A0A147GDN5	97.07	51	600.166	SER63, LYS64, TYR65, ARG72, LEU75, GLU80, PHE83, ARG84, THR87, THR91, GLU94, LYS95, HIS136, THR137, SER140, MET141, TRP144, ASN199, HIS200, TRP203, ARG250, ALA253, TYR254, ASN256, TYR257, PRO260, ASP310, LYS312, ASP313, LEU314, THR318, LYS319, SER348, PHE349, ARG350, MET351.		
8	Azotobacter beijerinckii	A0A1H6S8X7	97.30	41	552.917	SER60, LYS61, TYR62, ARG69, LEU72, GLU77, PHE80, ARG81, THR84, THR88, GLU91, ARG92, HIS133, THR134, SER137, MET138, TRP141, ASN196, HIS197, TRP200, ARG247, ALA250, TYR251, ASN253, TYR254, PRO257, ASP308, GLU310, ASP311, LEU312, LYS317, ASN346, PHE347, AR348.		
9	Azotobacter chroococcum	A0A4U1KWH0	97.27	43	553.255	ALA, ARG, ASN, ASP, GLU, HIS, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR,		
10	Pseudomonas mosselii	A0A290HDG3	97.31	53	600.737	SER63, SER63, LYS64, TYR65, ARG72, LEU75, GLU80, PHE ARG84, THR91, GLU94, LYS95, HIS136, THR137, SER1- MET141, TRP144, ASN199, HIS200, TRP203, ARG250, ALA2 TYR254, ASN256, TYR257, PRO310, ASP310, LYS3 ASP313, LEU314, SER318, LYS319, ALA321, SER348, PHE3- ARG350, LEU351.		
11	Armillaria ostoyae	A0A284RBB7	90.31	25	204.063	ALA, ASN, ASP, GLN, GLU, GLY, LEU, LYS, PHE, PRO, SEF THR, VAL.		
12	Pseudomonas taiwanensis	V7DIG1	97.01	48	596.830	SER63, LYS64, TYR65, ARG72, LEU75, GLU80, PHE ARG84, THR87, THR91, GLU94, LYS95, HIS136, THR1 SER140, MET141, TRP144, ASN199, HIS200, TRP2 ARG250, ALA253, TYR254, ASN256, TYR257, PRO2 ASP310, LYS312, ASP313, LEU314, SER318, LYS319, SER3 SER348, PHE349, SRG350, LEU351.		
13	Pseudomonas putida	A0A177SQL8	97.31	39	527.374	SER60, LYS61, TYR62, ARG69, PHE80, ARG81, THR84, THR88, GLU91, ARG92, HIS133, THR13, SER137, MET138, TRP141, ASN196, HIS197, TRP200, ARG247, ALA250, TYR251, ASN253, TYR254, PRO257, ASP307, ASP310, LEU311, SER315, LYS316, ALA318, SER345, PHE346, ARG347, LEU348.		
14	Pseudomonas cannabina	A0A0P9N1M2	97.01	51	711.112	SER67, LYS68, TYR69, LYS74, ARG76, PHE87, ARG88, THR91, THR95, GLU98, ARG99, HIS140, THR141, SER144, MET145, TRP148, GLU199, LYS200, ASN202, ASN203, HIS204, TRP207, ASN247, LYS250, ARG251, ARG254, SER257, TYR258, ASN260, TYR261, PRO264, ASP314, THR316, ASP317, LEU318, LYS320, PRO322, LYS323, THR352, PHE353, ARG354, LEU355.		
15	Gymnopilus dilepis	A0A409YJI7	90.01	34	540.176	ALA, ASN, ASP, GLN, GLU, GLY, LEU, LYS, PHE, PRO, SER, THR, VAL.		
16	Cryptococcus wingfieldii	A0A1E3IM26	91.07	8	119.683	ALA, ASN, GLN, HIS, ILE, LEU, MET, PRO, SER, TYR, VAL.		
17	Absidia glauca	A0A163MJ41	82.93	96	1125.572	ALA, ARG, ASN, ASP, GLN, GLU, GLY, HIS, ILE, LEU, LYS, MET, PHE, PRO, SER, TYR, VAL.		
18	Pseudomonas guariconensis	A0A1G7A6T7	97.31	50	629.616	PHE, PRO, SER, TYR, VAL. SER64, LYS65, TYR66, ARG73, LEU76, LYS78, GLU81, PHE84, ARG85, THR88, THR92, GLU95, ARG96, HIS137, THR138, SER141, MET142, TRP145, ASN200, HIS201, TRP204, ARG251, ALA254, TYR255, ASN257, TYR258, PRO261, ASP311, HIS313, ASP314, LEU315, SER319, LYS320, SER349, PHE350, ARG351, LEU352.		

Current Trends in Biotechnology and Pharmacy 1195 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

19	Parasitella parasitica	A0A0B7NR67	87.63	72	614.125	ALA, ARG, ASP, GLN, GLU, HIS, ILE, LEU, LYS, MET, PHE PRO, SER, THR, TYR, VAL.			
20	Streptomyces bingchenggensis	D7C3V0	91.11	41	738.159	ALA, ARG, ASN, GLN, GLU, GLY, HIS, ILE, LEU, PHE, PRO, SER, THR, TRP, TYR, VAL.			
21	Streptomyces stelliscabiei	A0A0L0L7D9	90.71	45	1318.046	ALA, ARG, ASN, ASP, CYS, GLN, GLU, GLY, HIS, LEU, MET, PHE, PRO, SER, THR, TRP, TYR, VAL.			
22	Pseudomonas chlororaphis	A0A1Q8EW13	97.31	48	699.613	SER67, LYS68, TYR69, LYS74, ARG76, PHE87, ARG88, THR91 THR95, GLU98, ARG99, HIS140, THR141, SER144, MET145 TRP148, ASP199, LYS200, ASN202, ASN203, HIS204, TRP207 ASN247, LYS250, ARG251, ARG254, ALA257, TYR258 ASN260, TYR261, PRO264, ASP314, THR316, ASP317 LEU318, SER322, LYS323, ALA325, LYS351, THR352, PHE353 ARG354, LEU355.			
23	Catenulispora sp.	A0A1Q7W2H9	91.75	52	1647.793	ALA, ARG, ASN, ASP, CYS, GLN, GLU, GLY, HIS, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR, VAL.			
24	Bifidobacterium primatium	A0A2M9HAB6	94.32	9	520.846	ALA, ASP, GLY, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR, VAL.			
25	Panaeolus cyanescens	A0A409VFV0	88.99	8	4497.720	ALA, ARG, ASN, ASP, GLN, GLU, GLY, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR, VAL.			
26	Pseudomonas hunanensis	A0A2I0CJJ3	96.71	52	577.042	SER63, LYS64, TYR65, ARG72, LEU75, GLU80, PHE83, ARG84, THR87, THR91, GLU94, LYS95, HIS136, THR137, SER140, MET141, TRP144, ASN199, HIS200, TRP203, ARG250, ALA253, TYR254, ASN256, TYR257, PRO260, ASP310, THR312, ASP313, LEU314, SER318, LYS319, SER321, SER348, PHE349, ARG350, LEU351.			
27	Dentipellis fragilis	A0A4Y9YUX5	94.13	16	107.586	ALA, ASN, ASP, GLY, ILE, LEU, LYS, PHE, PRO, SER, THR, TRP TYR, VAL.			
28	Kwoniella heveanensis	A0A1B9HL52	95.35	19	42.704	CYS, GLN, ILE, LYS, THR.			
29	Mucor ambiguus	A0A0C9MAA2	95.35	6	92.491	ARG, ASN, ASP, ILE, LEU, LYS, MET, PHE, TRP.			
30	Rhizophagus irregularis	A0A2I1G671	95.00	5	65.329	ALA, ILE, LEU, MET, PHE, TRP.			
31	Pseudomonas veronii	A0A0R3BFA2	96.71	46	796.939	SER66, LYS67, TYR68, LYS73, ALA74, ARG75, LEU78, GLU83 PHE86, ARG87, THR90, THR94, GLU97, LYS98, HIS138 THR140, SER143, MET144, TRP147, GLU198, LYS198 ASN201, ASN202, HIS203, TRP206, ASN246, LYS249, ARG250 ARG253, SER256, TYR257, ASN259, TYR260, PRO263 ASP313, LYS315, ASP316, LEU317, GLU319, MET321, LYS322 AI A324, LYS350, THR351, PHE352, ARG353, J E1/354			
32	Pseudomonas antarctica	A0A1H0DXW5	97.31	48	628.389	SER62, LYS63, TYR64, ARG71, LEU74, GLU79, PHE82, ARG83, THR86, THR90, GLU93, LYS94, HIS135, THR136, SER139, MET140, TRP143, ASN198, HIS199, TRP202, ARG249, SER252, TYR253, ASN255, TYR256, PR0259, ASP309, LYS311, ASP312, LEU313, GLU315, MET317, LYS318, ALA320, LYS346, THR347, PHE348, ARG349.			
33	Pythium brassicum	A0A5D6Y6W5	91.19	7	36.044	ASN, ASP, ILE, LEU, PRO, TRP, VAL.			
34	Diversispora epigaea	A0A397HXH2	94.87	7	43.346	ALA, ARG, ASP, ILE, LEU, PHE, PRO.			
35	Piloderma croceum	A0A0C3G7M6	89.47	37	2228.268	ALA, ARG,ASN,ASP, CYS, GLN, GLU, GLY, HIS, ILE, LEU,LYS, MET, PHE, PRO, SER, THR, TRP, TYR, VAL.			
36	Aspergillus lentulus	A0A0S7DJP4	79.07	4	1227.722	ALA, ARG, ASN, ASP, GLU, GLY, HIS, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR.			
37	Valsa mali	A0A194W6T4	85.71	4	1494.096	LEU354, GLU355, ALA356, PRO357, TRP358, THR359, THR360, GLU361, TYR362, LEU363, ASN364, TYR365, THR366, VAL367, ASN368, SER369, TYR370, GLY371, PHE373, GLU374, PRO375, GLY376, ALA377, GLY378, SER379, LEU380, GLY381, GLU382, GLY383, SER384, GLY385, ARG386, TYR387, ASP388, GLY389, LEU390, GLY391, TRP392, GLY393, SER394, LEU395, LEU396, TYR397.			

Current Trends in Biotechnology and Pharmacy 1196 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

38	Fomitopsis rosea	A0A4Y9YDI1	93.99	18	221.309	VAL317, LEU318, SER321, ILE322, TYR324, VAL325, SER330, ALA336, ALA337, ILE340, GLN390, LYS393, ALA394, PRO398, TRP400, THR401, ARG404, ASP405, MET408.
39	Streptomyces azureus	A0A0K8PV81	92.65	49	469.517	LEU39, HIS40, THR41, ASP44, PHE45, MET48, ALA49, VAL52, PRO58, TRP59, GLY62, TRP63, ARG65, LEU66, SER69, TYR104, GLN105, LEU108, ILE112, ILE148, GLN149, TYR151, GLN152, ASN155, ALA208, MET269, VAL272, GLY273, TRP274, GLY276, ALA277, CYS279, GLU280, TYR290, PHE297, LEU309.
40	Glycomyces buryatensis	A0A4S8QGJ7	89.13	5	1311.623	GLY713, ALA714, VAL715, TYR716, THR717, THR718, ALA719, SER720, ASN721, GLU722, PRO723, TYR724, GLN725, ALA726, ALA727, LEU728, ALA729, ALA730, ALA731, LYS732, ASP733, ALA734, ALA735, GLU736, ASP737, GLY738, THR739, ASP740, GLU741, GLU742, PHE743, ARG744, THR745, ALA746, PHE747, GLU748, ALA749, LEU750, LEU751, ASP752, GLY753, ILE754, GLU755, ALA756, LEU757, GLU758, LEU759, LEU760.
41	Aspergillus thermomutatus	A0A397GRX2	88.10	15	20862.081	LEU700. LEU23, LEU24, VAL25, SER26, ASP27, SER28, ASP29, ILE30, THR31, ARG32, ALA33, GLN34, GLN35, LYS36, ILE37, LYS38, SER39, ASN40, GLU41, ASP42, PRO43, TRP44, THR45, ALA46, SER47, TRP48, ASN49, VAL50, LEU51, THR52, SER53, LEU54, PRO55, PHE56, ASP58, PRO59, SER60, TYR61, VAL62, SER64, PRO65, VAL66, SER67, VAL68, VAL69, TYR70, ARG71, SER72, ALA73, TRP74, ASP75, ASP76, ASN77, ALA78, GLU79, ASN80, ALA81, GLU82, ASN83, LEU84, TRP85, HIS86, ASP87, VAL88, ALA89, ALA90, ALA91, PHE92, ASN93, LEU94, ALA95, LEU96, AARG97, TRP98, LYS99, ILE100, SER101, SER102, ASN103, THR104, SER105, PHE106, ALA107, ASP108, ALA109, ALA110, SER111, ASN112, ILE113, LEU114, ASP115, ALA116, TRP117, ALA118, THR119, THR120, LEU121, THR122, ALA123, LEU124, GLY125, GLY126, GLY127, ASP128, ASP29, LYS130, TYR131, LEU132, THR133, ALA134, GLY135, LEU136, GLN137, GLY138, TYR139, GLU140, LEU141, ALA142, ASN143, ALA144, ALA145, GLU146, LEU147, LEU148, ARG149, ASP150, TYR151, GLU152, PRO153, PHE154, ALA155, THR156, ASN157, VAL158, LEU159, PRO160, SER161, VAL162, ILE163, ASN164, MET165, ALA166, ASN168, THR168, ILE169, PHE170, ILE171, PRO172, MET173, HIS174, TYR175, LYS176, TRP177, LEU178, HIS179, HIS180, GLU181, GLU182, PRO183, SER184, GLU185, HIS186, ASN187, ILE188, LEU189, HIS190, PHE191, PHE192, ALA193, ASN194, TRP195 GLU196, IEU197, CYS198, ASN199, ILE200, ALA201, SER202, ALA203, MET204, ALA205, MET206, GLY207, VAL208, LEU209, THR210, GLU211, ASN212, GLN213, THR214, VAL215, TRP216, ASP217, PHE218, ALA219, VAL220, ASN221, TYR222, PHE223, LYS224, GLU225, GLY226, ASP227, GLY228, ASN229, GLY230, ALA231, ILE239, VAL240, ARG241, GLU242, PRO243, GLY244, THR245, GLY246, THR247, PRO248, LEU249, GLY250, GLN251, GLY246, THR247, PRO248, LEU249, GLY250, GLN251, GLY246, THR247, PRO248, LEU249, GLY250, GLN251, GLY252, GLN253, GLU264, SER255, GLY256, ARG257, ASP258, GLN253, GLU264, SER265, GLY256, ARG257, ASP258, GLN259, GLY260, HIS261, SER262, ALA263, LEU264, ASP265, ILE266, GLN267, LEU268, LEU269, ALA271, ALA271, ILE272, GLY273, GLN274, GLN275, ALA276, TRP277, AS

Current Trends in Biotechnology and Pharmacy Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

42	Sulfopaludibacter	A0A2N9LZH7	94.71	42	89.097	TRP140, TYR141, ALA144, ILE189, TYR192, SER193, TYR194, GLN195, ARG306.
43	Enterobacter lignolyticus	E3G3T5	95.47	60	1559.440	LEU34, THR35, TYR36, ASP37, CYS38, ARG39, GLN40, MET41, ILE44, ILE48, TYR55, ALA58, TRP59, ASN61, LEU62, LYS65, TYR92, SER94, PHE95, GLY96, PRO97, TYR98, TYR99, ARG113, ILE118, SER122, LYS123, SER129, LYS123, SER129, LYS130, LEU132, VAL133, SER136, ASP137, ARG140, ALA141, LEU144, TYR148, GLN181, ILE183, ARG190, ILE192, ILE195, ASP196, ARG198, VAL199, ASP202, VAL203, TRP247, ASN249, HIS251, TRP254, ARG300, ARG302, PHE304, HIS305, TYR306, ASN308, PH309, ALA312, ALA315, ARG316, ARG319, GLU322, ILE323, GLU360, LYS362, TYR363, PRO365, GLU367, ALA368, PRO371 LE11372 ALA375, VAL376, TRP379
44	Enterobacter cloacae	V5B691	97.00	48	828.096	SER58, LYS59, TYR60, SER65, ARG67, ILE70, GLU75, PHE78, HIS79, THR82, ALA66, GLU89, LYS90, THR97, ARG101, HIS131, THR132, SER135, MET136, TRP139, THR143, TRP184, SER190, LYS191, ASN193, HIS195, SER196, TRP198, ASN238, ARG241, ARG242, ARG245, ALA248, TYR249, ASN251, TYR252, GLN255, PHE308, LEU309, GLN311, THR313, ASN314, GLN342, ASN343, ARG344, ARG345, GLY348.
45	Enterobacter kobei	A0A2J0PFA7	96.99	.99 63 660.488 SER56, LYS57, TYR58, ARG65, LEU68, ASP73 THR80, THR84, GLU87, LYS88, HIS129, TH MET134, TRP137, ASN191, ASN192, HIS ARG240, ARG243, SER246, TYR247, ASI GLN253, PHE306, THR307, GLU309, SER SER341, THR342, ARG343.		SER56, LYS57, TYR58, ARG65, LEU68, ASP73, PHE76, HIS77, THR80, THR84, GLU87, LYS88, HIS129, THR130, SER133, MET134, TRP137, ASN191, ASN192, HIS193, TRP196, ARG240, ARG243, SER246, TYR247, ASN249, TYR250, GLN253, PHE306, THR307, GLU309, SER311, SER312, SER341, THR342, ARG343.
46	Asticcacaulis biprosthecum	F4QTL1	91.19	62	829.187	SER61, ARG62, TYR63, ARG70, VAL73, SER78, TYR81, GLU82, VAL85, LEU88, ARG89, SER92, GLN93, GLU135, THR136, PHE139, SER140, LEU143, THR144, ASN193, HIS194, TRP197, ARG244, LEU246, SER247, TYR248, ALA250, TYR251, LEU253, ALA254, CYS286, LEU287, LEU290, LEU307, PRO308, ASN309, GLY310, GLU311, PHE312, TYR313, ASP314, GLY316, ASP317, VAL318, ALA319, TRP320, ARG345, SER346, THR347, ASN348, LEU349.
47	Enterobacter soli A0A198GHF4 95.74 46 237.996 SER52, LYS53, TYR54 A0A198GHF4 95.74 46 237.996 THR126, SER129, TR ASN184, HIS185, ASN22		SER52, LYS53, TYR54, SER59, ARG61, PHE72, HIS125, THR126, SER129, TRP133, THR180, LYS181, ASN183, ASN184, HIS185, ASN228, LYS231, ARG232, TYR239, TYR242.			
48 Enterobacter huaxiensis A0A3R9Q7F1 94.44 56 551.192 SER52, LYS53, TYR54, SE 551.192 THR76, THR80, GLU83, I TRP133, ALA180, LYS181 ASN228, LYS231, ARG ASN241, TYR242, GLN ASP312, ARG313, ARG31		SER52, LYS53, TYR54, SER59, ALA60, ARG61, TYR72, ARG73, THR76, THR80, GLU83, HIS125, THR126, SER129, MET130, TRP133, ALA180, LYS181, ASN183, ASN184, HIS185, TRP188, ASN228, LYS231, ARG232, ARG235, ALA238, TYR239, ASN241, TYR242, GLN245, ARG278, ASP283, GLN285, ASP312, ARG313, ARG314.				
49	Kluyvera intermedia	A0A447MG36	93.07	14	132.676	ASP138, ALA139, ASP140, THR141, MET143, ASN144, THR162, GLY163, LEU164, ARG168, LEU170.
50	Enterobacter cancerogenus	A0A0A3YQN6	90.70	73	1598.807	PHE30, LEU31, SER32, GLU35, MET36, THR39, LEU43, PRO50, GLN51, THR52, GLN54, ALA55, TRP56, GLN58, LEU59, GLN61, ALA62, ARG65, TYR89, SER91, LEU92, SER93, ALA94, TYR95, TRP96, ARG110, VAL115, ASN116, SER119, LYS120, GLN123, GLY126, VAL127, LEU129, ALA130, THR133, ALA134, GLN137, ALA138, LEU141, PHE145, GLN178, ARG187, THR189, LEU192, ASP193, ARG195, TYR196, THR199, ARG200, ASP203, ALA204, ASN247, ASN248, HIS249, TRP252, ARG297, ARG299, PHE301, HIS302, TYR303, TYR305, PHE306, GLN309, THR312, SER313, GLN316, ASN357, ASP359, ARG360, VAL361, SER362, LEU363, ARG364, ILE366, PRO367, SER370, LEU371, ARG374, GLN382, ILE385, HIS386, ILE389.

Current Trends in Biotechnology and Pharmacy 1198 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

Multiple sequence alignment analysis of alginate lyase sequences

Multiple sequence alignment of the alginate lyase protein sequences revealed the presence of domains AALVPPQGYYEGIEKLKT and AADLVPPPGYYAAVGERK among alginate lyase sequences of *Pseudomonas species* which are the characteristic domains of alginate lyase A1-III. However, the sequences are highly variable among alginate lyases reported in different species.

Phylogenetic analysis of alginate lyase sequences

Fig. 1: Phylogenetic Tree of Alginate Lyase Sequences of Different Microorganisms Constructed by the Neighbour-Joining Method

MEGA-X was used to generate the phylogenetic tree using the Neighbor-Joining method. The evolutionary relationship among various alginate lyase sequences reported in different microorganisms (Fig. 1). The boot strap values are mentioned in the nodes of the phylogenetic tree. The alginate lyase of *Pseudomonas cannabina* and *Pseudomonas chlororaphis* form a clade. Similarly, *Pseudomonas taiwanensis, Pseudomonas parafulva, Pseudomonas mosselii, Pseudomonas capeferrum* and *Pseudomonas hunannesis* show evolutionary relationship.

Physicochemical analysis of alginate lyase sequences

Physiochemical parameters like negatively charged residues, positively charged amino acid residues and hydropathicity was also observed among these alginate lyases and were compared in Table 2. From the analysis, it can be viewed that the total number of amino acid residues ranged from 320 to 1059 with varying molecular weight. The pl values ranged from 4.42 to 9.59. The instability index is a measure of a protein's in vivo half-life (10). Proteins with an in vivo half-life of less than 5 hrs have an instability index of more than 40, whereas proteins with a half-life of more than 16 hrs have an instability index of less than 40 (3). Out of 50 alginate lyases, 30 sequences have half-life more than the 16 hrs while rest of the sequences exhibit half-life of less than 5 hrs in vivo. The aliphatic index of a protein is a measurement of the relative volume occupied aliphatic side chains of amino acids like alanine, valine, leucine, and isoleucine. As the aliphatic index rises, so does the thermal stability of globular proteins. The protein sequence-based analysis of aliphatic index among these enzymes revealed that the alginate lyases taken for this study were found to be thermostable due to the high value of aliphatic index.

Current Trends in Biotechnology and Pharmacy 1199 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

S. no	Organisms	Number of amino acids	Molecular weight	Theoretical pl	Total number of negatively charged residues (ASP + GLU)	Total number of positively charged residues (ARG + LYS)	Instability index	Aliphatic index	Grand average of hydropathicity
1	Pseudomonas nitroreducens	371	41310.44	8.47	42	45	34.56	63.45	-0.570
2	Pseudomonas capeferrum	367	41235.73	9.05	43	50	35.11	71.69	-0.519
3	Pseudomonas trivialis	369	41785.60	8.91	44	50	37.85	70.68	-0.566
4	Pseudomonas parafulva	367	41041.69	9.53	35	48	25.67	72.78	-0.429
5	Azotobacter beijerinckii	372	40953.31	6.14	48	45	47.39	73.90	-0.372
6	Azotobacter chroococcum	373	41300.95	6.97	48	48	43.48	75.23	-0.399
7	Pseudomonas mosselii	366	41018.59	9.13	41	49	29.23	73.44	-0.484
8	Armillaria ostoyae	853	93476.86	5.38	105	84	42.53	66.73	-0.538
9	Pseudomonas taiwanensis	367	41184.78	9.35	41	53	34.67	69.29	-0.577
10	Pseudomonas putida	363	40683.86	9.08	41	48	32.23	71.87	-0.538
11	Pseudomonas cannabina	378	42635.45	8.64	49	53	31.50	68.49	-0.602
12	Gymnopilus dilepis	904	97489.85	5.66	94	80	46.20	61.34	-0.183
13	Cryptococcus wingfieldii	444	48875.59	4.42	52	24	34.87	79.64	-0.356
14	Absidia glauca	953	109226.54	8.32	103	106	45.95	77.61	-0.584
15	Pseudomonas aeruginosa	367	40774.11	8.88	42	47	39.02	72.15	-0.447
16	Pseudomonas guariconensis	368	41068.54	9.35	39	50	38.02	69.62	-0.579
17	Parasitella parasitica	482	50244.32	9.24	58	68	46.1	70.10	-0.475
18	Streptomyces bingchenggensis	472	48631.12	6.53	43	40	24.88	75.97	-0.115
19	Streptomyces stelliscabiei	509	53545.65	8.53	39	43	34.50	63.63	-0.344
20	Pseudomonas chlororaphis	374	41942.47	8.46	47	50	35.56	66.90	-0.571
21	Catenulispora sp.	1128	119492.50	5.00	127	96	15.16	71.50	-0.404
22	Bifidobacterium primatium	474	52332.63	5.26	44	36	31.55	68.86	-0.317
23	Panaeolus cyanescens	1059	117611.30	9.17	80	99	50.71	78.88	-0.277

Table 2: Physicochemical Parameters of Retrieved Alginate Lyase Sequences

Current Trends in Biotechnology and Pharmacy 1200 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

24	Pseudomonas hunanensis	367	41057.63	9.29	40	50	28.39	72.21	-0.504
25	Dentipellis fragilis	899	104529.96	6.51	121	112	47.84	78.23	-0.655
26	Kwoniella heveanensis	404	42206.93	5.49	27	24	34.17	73.91	-0.049
27	Mucor ambiguus	926	107721.88	6.43	121	113	49.86	81.71	-0.556
28	Rhizophagus irregularis	902	98308.87	6.64	101	97	43.40	91.42	-0.131
29	Pseudomonas veronii	373	42215.10	8.80	45	50	33.36	70.70	-0.555
30	Pseudomonas antarctica	369	41549.22	8.66	44	48	36.40	69.11	-0.542
31	Pythium brassicum	1010	118528.37	5.94	129	113	40.14	74.32	-0.732
32	Diversispora epigaea	641	71003.43	7.98	70	72	32.31	72.96	-0.380
33	Sphingomonas sp.	461	50731.59	4.65	34	18	32.37	73.75	-0.154
34	Piloderma croceum	501	53492.36	5.86	47	34	43.49	73.95	-0.298
35	Aspergillus lentulus	535	56017.21	4.44	50	20	30.93	77.29	-0.079
36	Valsa mali	679	72740.45	5.26	74	59	36.34	62.44	-0.457
37	Fomitopsis rosea	485	51776.78	6.33	57	53	34.39	73.42	-0.411
38	Streptomyces azureus	930	101173.63	4.40	146	70	23.69	69.55	-0.392
39	Glycomyces buryatensis	528	57057.71	4.79	56	24	43.66	74	-0.315
40	Aspergillus thermomutatus	426	46000.81	9.27	42	52	40.16	65.45	-0.519
41	Candidatus Sulfopaludibacter	410	46138.88	6.02	47	43	30.70	78.63	-0.453
42	Enterobacter lignolyticus	358	39382.91	9.35	36	32	48.20	82.01	-0.175
43	Enterobacter cloacae	352	38862.70	6.67	37	35	45.20	78.61	-0.323
44	Enterobacter kobei	374	40316.83	9.68	37	47	42.74	89.47	-0.201
45	Asticcacaulis biprosthecum	329	37588.92	8.64	32	36	48.22	81.61	-0.300
46	Helicobacter pylori	325	36733.84	8.81	33	38	38.53	79.66	-0.362
47	Enterobacter soli	325	36733.84	8	33	38	38.53	79.66	-0.362
48	Enterobacter huaxiensis	325	36572.88	9.19	33	41	40.46	85.42	-0.330
49	Kluyvera intermedia	379	43846.79	6.23	44	36	46.32	85.96	-0.425
50	Enterobacter cancerogenus	422	47544.65	9.49	35	43	43.59	79.24	-0.488

Current Trends in Biotechnology and Pharmacy 1201 Vol. 17(Supplementary issue - 3B) 1191-1207, September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

Motif analysis of Alginate lyase sequences

From the analysis, it can be inferred that 16 motifs were distributed among 49 alginate lyase sequences of different microorganisms. Motif location with sequence length ranging from 15 to 50 as shown in Table 3. Motif 1 was observed in Pseudomonas capeferrum, Pseudomonas trivialis. Pseudomonas parafulva, Azotobacter beijerinckii, Azotobacter Pseudomonas chroococcum. mosselii: Motif 2 was observed in Pseudomonas nitroreducens, Pseudomonas capeferrum, Pseudomonas trivialis, Pseudomonas parafulva, Azotobacter beijerinckii, Azotobacter chroococcum. Pseudomonas mosselii. Enterobacter lignolyticus. Enterobacter cloacae, Enterobacter kobei, Asticcacaulis biprosthecum, Helicobacter pylori, Enterobacter huaxiensis, soli. Enterobacter Kluyvera intermedia, Enterobacter cancerogenus; Motif 3 was observed in Pseudomonas nitroreducens. Pseudomonas capeferrum, Pseudomonas trivialis, Pseudomonas parafulva, Azotobacter beijerinckii, Azotobacter chroococcum, Pseudomonas mosselii, Enterobacter kobei, Enterobacter soli, Enterobacter huaxiensis; Motif 4 was observed in *Pseudomonas nitroreducens*. capeferrum. Pseudomonas Pseudomonas trivialis, Pseudomonas parafulva, Azotobacter beijerinckii, Azotobacter chroococcum. Pseudomonas mosselii. Enterobacter cloacae. Enterobacter kobei. Enterobacter soli. Enterobacter huaxiensis; Motif 5 was observed in Pseudomonas taiwanensis, Pseudomonas capeferrum, Pseudomonas guariconensis, Pseudomonas Pseudomonas parafulva. veronii, Pseudomonas trivialis, Pseudomonas antarctica. Pseudomonas hunanensis. Pseudomonas putida, Pseudomonas mosselii, Pseudomonas chlororaphis, Pseudomonas cannabina, Pseudomonas aeruginosa, Pseudomonas nitroreducens, Azotobacter chroococcum. Azotobacter beijerinckii, Enterobacter huaxiensis, Enterobacter soli, Enterobacter kobei, Enterobacter cloacae Motif 6 was observed in Streptomyces

bingchenggensis, Catenulispora sp.. Streptomyces stelliscabiei. Streptomyces azureus, Valsa mali, Aspergillus thermomutatus, Aspergillus lentulus, Bifidobacterium primatium; Motif 7 was observed in Fomitopsis rosea, Armillaria ostoyae, Piloderma croceum, Gymnopilus dilepis, Panaeolus cyanescens, Dentipellis fragilis, Cryptococcus wingfieldii, Enterobacter cancerogenus, Kluyvera intermedia, Enterobacter lignolyticus; Motif 8 was observed in Pseudomonas taiwanensis, Pseudomonas parafulva. Pseudomonas Pseudomonas hunanensis. mosselii. Pseudomonas capeferrum, Pseudomonas putida, Pseudomonas trivialis, Pseudomonas antarctica. Pseudomonas veronii. Pseudomonas cannabina, Pseudomonas Pseudomonas chlororaphis, guariconensis, Azotobacter chroococcum, Azotobacter beijerinckii, Pseudomonas aeruginosa; Motif 9 was observed in Mucor ambiguus, Parasitella parasitica, Absidia glauca, Diversispora epigaea, Rhizophagus irregularis, Pythium brassicum; Motif 10 was observed in Aspergillus thermomutatus, Aspergillus lentulus, Streptomyces azureus, Streptomyces bingchenggensis, Catenulispora sp., Valsa mali, Streptomyces stelliscabieii, Bifidobacterium primatium; Motif 11 Pseudomonas mosselii, Pseudomonas hunanensis. Pseudomonas guariconensis, Pseudomonas cannabina, Pseudomonas Pseudomonas taiwanensis. parafulva. Pseudomonas chlororaphis. Pseudomonas capeferrum. Pseudomonas putida, Pseudomonas antarctica, Pseudomonas veronii, Pseudomonas trivialis, Azotobacter chroococcum. Pseudomonas aeruginosa, Pseudomonas nitroreducens. Azotobacter Enterobacter beijerinckii, huaxiensis, Enterobacter soli, Enterobacter kobei; Motif 12 was observed in Mucor ambiguus, Parasitella parasitica, Absidia glauca, Diversispora epigaea, Rhizophagusirregularis; Motif 13 was observed in Mucor ambiguus, Parasitella parasitica, Absidia glauca, Rhizophagus irregularis, Diversispora epigaea; Motif 14 was observed in Dentipellis fragilis, Armillaria ostoya, Mucor ambiguuse,

Current Trends in Biotechnology and Pharmacy 1202 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

Parasitella Absidia glauca, parasitica, Diversispora epigaea, Gymnopilus dilepis, Fomitopsis rosea, Enterobacter cancerogenus, Piloderma croceum, Rhizophagus irregularis, Panaeolus cyanescens, Kluyvera intermedia, lignolyticus, Enterobacter Cryptococcus wingfieldii; Motif 15 was observed in Dentipellis fragilis, Armillaria ostoyae, Mucor ambiguus, Parasitella parasitica, Absidia glauca, Diversispora epigaea, Gymnopilus dilepis, Fomitopsis rosea, Enterobacter cancerogenus, Piloderma croceum, Rhizophagus irregularis, Kluyvera intermedia, Enterobacter lignolyticus, Cryptococcus wingfieldii; Motif 16 was observed in Catenulispora sp., Streptomyces azureus, Enterobacter cancerogenus, Streptomyces

stelliscabie, Kluyvera intermediai, Streptomyces bingchenggensis, Cryptococcus wingfieldi, Piloderma croceumi, Valsa mali, Rhizophagus irreaularis. Bifidobacterium primatium. Mucor ambiguus, Parasitella parasitica, Aspergillus thermomutatu, Aspergillus lentuluss, Diversispora epigaea, Candidatus Sulfopaludibacter sp., Glycomyces buryatensis, Pythium brassicum, Dentipellis fragilis, Absidia Helicobacter pylori, Enterobacter glauca, lignolyticus, Sphingomonas sp., Fomitopsis rosea, Gymnopilus dilepi, Armillaria ostoyaes, Panaeolus cyanescens. These 16 motifs were subjected to BLASTp and it was observed that all the 16 motif sequences correspond to mannuronate (Poly M) specific alginate lyases.

Motif number	Sequence length	Sequences
1.	50	NNHSYWAAWSVMATAVATBRRDLFDWAVKEYKVAANQVDDQGFLPNELKR
2.	50	CALTWLTTWARADALMSTDYNHTGKSMRKWALGSMSGSWLRLKFSNSQPL
3.	50	NFRCEAAPAPYTGSLQFRSKYEGSDKARATLNAQSEKAFRDSTKDITDLE
4.	41	KYAWLEPYCALYTCAPDTLERKHGMQPFKSFRLGGDLTRVY
5.	50	QRALAYHNYALPPLAMIASFAQVNGVDLRQENNGALQRLGERVLAGVKDP
6.	29	AEAZLIEKWFARLADQVVRDWSBLPLEKI
7.	50	LGQWQESGRDQGHSLLGVGLMGTICZMAWNQGEDLYGYDDSRFLKGAEYV
8.	46	FNKQYADQIAADGEQPLEAARTRPFHYRCFNLEAMITNAKJGDYLG
9.	21	AAAALVPPQGYYAGIEKLKTG
10.	50	KYFVVPMTRLLNNSVLLNNLDERPKTPEEPQIIFRHDATEEYNENMRYGR
11.	50	ITHYWANWELCNMASAMAIGVLTDBQAVWDRAVDYFKNGDGNGAIKNAIP
12.	15	RGVSKMVMQYMRDGR
13.	50	YTYHDKNLYAMNNNGGRNTAIEHGRSLPNAKWIMPFDGNCYLSHNGFEEI
14.	50	RDKIILYRIIGNDLPPRHKEGQTLSNLQFILEHEPSFPBTKKIFJLNRII
15.	29	YLEWLVTSPTGIEEASAPNNHGTLYDLQV
16.	21	WYFTGDSRYADKAABIJRAWF

Table 3 Motif Analysis of Alginate Lyases sequences

Modeling of alginate lyase structure by homology modeling

The sequences of alginate lyase were submitted in SWISS-MODEL and the structures were generated. The model quality was evaluated by Ramachandran plot analysis and is presented in Table 1. The predicted model structures of alginate lyase of *Absidia glauca*, *Parasitella parasitica*, *Panaeolus cyanescens*, *Piloderma croceum*, *Aspergillus lentulus*, *Valsa mali*, *Glycomyces buryatensis and Aspergillus thermomutatus* have Ramachandran favoured region below 90% during homology modeling. Five structures of alginate lyase retrieved from

Ramya et al

Current Trends in Biotechnology and Pharmacy 1203 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

SWISS-MODEL repository, while the other modelling as depicted in Fig. 2. structures were modelled using homology

Computational analysis of alginate lyases produced by different microorganisms

Current Trends in Biotechnology and Pharmacy 1204 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

Fig. 2: Structures of Alginate Lyases predicted by Homology Modeling

Ramya et al

Current Trends in Biotechnology and Pharmacy 1205 Vol. 17(Supplementary issue - 3B) 1191-1207, September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

Prediction of active sites for reported alginate lyases

The number of active sites, surface area of pockets and amino acids present in the pocket of reported alginate lyases was predicted using Computed Atlas of Surface Topography of proteins (CASTp) server. This analysis serves as a basis for protein ligand interaction studies. The number of pockets was calculated for reported alginate lyases ranges from 39-51 as shown in Table 1. The surface area of pockets of the reported alginate lyases were predicted from 500 to 798 using CASTp server. The amino acids present in the pocket of reported alginate lyases were serine, lysine, alanine, arginine, asparagine, aspartic acid, cysteine, leucine, lysine, phenylalanine, proline, serine, threonine and tryptophan and also active site pockets for different alginate lyases was shown as Table 1.

Conclusion

The present work focuses on in silico characterization of the different reported alginate lyases. The alginate lyases ranges from UniProt. Multiple sequence alignment revealed the conserved regions among different alginate lyases. The total number of amino acid residues ranged from 320 to 1059 with varying molecular weights. The pl varied between 4.42 and 9.59. Variability was also noted in terms of other physiochemical parameters such as negative charge residues (Asp and Glu), positively charged amino acid residues, and hydropathicity among these alginate lyases (GRAVY). Motifs were analysed using MEME server and the analysis using BLASTp shown as mannuronate (Poly M) specific alginate lyase. 3D structures of the enzyme sequences were modelled using SWISS-MODEL server. Using the Computed Atlas of Surface Topography of Proteins (CASTp) server, the number of active sites, surface area of pockets, and amino acids contained in the pocket of the reported alginate lyase were predicted. The number of pockets was calculated for different reported

alginate lyase as ranges from 4-96. This study provides valuable information on different alginate lyase produced by various microbes in terms of structural features and catalysis that can be exploited in designing or engineering of enzymes for various applications.

Acknowledgement

The authors would like to acknowledge the support provided by the management of Kalasalingam Academy of Research and Education to carry out this work.

References

- Benvegnu, T., and Sassi J.F. (2010) 1. Oligomannuronates from seaweeds as renewable sources for the development of green surfactants. In Carbohydrates in Sustainable Development I. Springer, Berlin, Heidelberg, 143-164.
- 2. Falkeborg, M., Cheong L.Z., Gianfico, Sztukiel, K.M., Kristensen, C., K., Glasius, M. and Guo, Z. (2014) Alginate oligosaccharides: enzymatic preparation and anti-oxidant property evaluation. Food Chem, 164, 185-194. https://doi. org/10.1016/j.foodchem.2014.05.053
- Tian, W., Chen, C., Lei, X., Zhao, 3. J. and Liang, J. (2018) CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res, 46, 363-367. https://doi.org/10.1093/ nar/gky473.
- 4. Yamasaki, M., Moriwaki, S., Miyake, O., Hashimoto, W., Murata, K. and Mikami, B. (2004) Structure and Function of a Hypothetical Pseudomonas aeruginosa Protein PA1167 Classified into Family PL-7 a novel alginate lyase with a β -sandwich fold. J Biol Chem, 279, 31863-31872. https://doi.org/10.1074/jbc.m402466200
- 5. Wong, T.Y., Preston, L.A. and Schiller, N.L. (2000) Alginate lyase: review of major

Current Trends in Biotechnology and Pharmacy

Vol. 17(Supplementary issue - 3B) 1191-1207, September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol, 54, 289-340. https://doi.org/10.1146/annurev. micro.54.1.289

- Madgwick, J. (1973). Alginate lyase in the brown alga *Laminaria digitata* (Huds.) Lamour. Acta Chem Scand, 27, 711-712. https://doi.org/10.3891/acta.chem. scand.27-0711.
- Lee, J.W. and Day, D.F. (1995) Bioacetylation of seaweed alginate. Appl. Environ. Microbiol, 61, 650-655. https://doi.org/10.1128/aem.61.2.650-655.1995
- Yang, Z., Li, J.P. and Guan, H.S. (2004) Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydr Polym, 58, 115-121. https://doi.org/10.1016/j. carbpol.2004.04.022.
- Kim, H.S., Lee, C.G. and Lee, E.Y. (2011) Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng, 16, 843. https://doi.org/10.1007/s12257-011-0352-8.
- Liu, J., Yang, S., Li, X., Yan, Q., Reaney, M.J. and Jiang, Z. (2019) Alginate oligosaccharides: production, biological activities, and potential applications. Compr Rev Food Sci Food Saf, 18 1859-1881. https://doi.org/10.1111/1541-4337.124944.
- Alkawash, M.A., Soothill, J.S. and Schiller, N.L. (2006) Alginate lyase enhances antibiotic killing of mucoid *Pseudomonas aeruginosa* in biofilms. APMIS, 114 131-138. https://doi.org/10.1111/j.1600-0463.2006. apm_356.x.
- 12. Achyutuni V.N.T. and Ramesh M (2021) Molecular Docking and MD Simulation

Analysis of L-asparaginase of *Streptomyces iranensis, Streptomyces himalayensis and Streptomyces griseus.* Curr Trends Biotechnol Pharm, 15(4), 390-400. https:// doi.org/ 10.5530/ctbp.2021.4.40.

- Jhansi P.M., Kiranmayi P.Y.N.L., Thanuja B., and Rajeswara R.E. (2021) Molecular Approach Towards Screening of Biological Targets of Berberine and its Production Sources. Curr Trends Biotechnol Pharm, 15(2), 141-152. https://doi.org/10.5530/ ctbp.2021.2.16.
- Guruprasad, K., Reddy, B.B. and Pandit, M.W. (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel, 4, 155-161. https://doi.org/10.1093/protein/4.2.155.
- Pandey, N., Grover, M. and Rai, A. (2016) Conservation of Properties of Outer Membranes Protein Across Host Genera of *Pasteurella multocida* Suggests Common Mechanism of Action. Mol Biol, 5, 2. https:// doi.org/10.4172/2168-9547.1000162.
- Ahmed, J., Khatiwada P., Purkaystha A., Roy, T. and Afrin, T.A. (2014) A computational study of alginate lyases and homology modeling of AlyPA: Implications for treatment of cystic fibrosis. Int J Comput Bioinforma Silico modelling, 3, 354-361.
- 17. Bailey, T.L., Timothy, L. and Charles Elkan. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol, 28-36.
- Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R. and Lepore, R. et al. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res Spec.

Ramya et al

1206

Current Trends in Biotechnology and Pharmacy 1207 Vol. 17(Supplementary issue - 3B) 1191-1207,September 2023, ISSN 0973-8916 (Print), 2230-7303 (Online) 10.5530/ctbp.2023.3s.56

Publ, 46, 296-303. https://doi.org/10.1093/ nar/gky427.

- 19. Shubhi S. and Smriti G. (2021). Insilico Analysis of Mucin- Binding Proteins in Lactic Acid Bacteria. Curr Trends Biotechnol Pharm, 15(6), 108-113. https:// doi.org/10.5530/ctbp.2021.6.19.
- Piroozmand, F., Ghadam, P., Zarrabi, M. and Abdi-Ali, A. (2020) Biochemical and computational study of an alginate

lyase produced by *Pseudomonas aeruginosa* strain S21. Iran J Basic Med Sci, 23, 454. https://doi. org/10.22038%2Fijbms.2020.37277.8874

21. Rogers, S., Wells, R. and Rechsteiner, M. (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Sci, 234, 364-368. https://doi. org/10.1126/science.2876518.