Identification and Validation of an Allele Specific Marker Associated with Pungency in Capsicum spp.

T. Chakradhar¹, B. Pradeep Reddy¹, N.Srinivas¹ and P.Chandra Obul Reddy²
¹Centromere Biosolutions, Agri Incubation Park, International Crop Research Institute for Semi Arid Tropics (ICRISAT), Patancheru-502328, Hyderabad, India
²Department of Botany, Y.V. University, Kadapa-516003, Andhra Pradesh, India
*For Correspondence - coreddy@yogivemanauniversity.ac.in

Abstract

Pungency or heat in Capsicum spp. is due to the accumulation of unique secondary compounds known as capsaicinoids in their placental tissues. Detecting presence or absence of pungency at the nursery stage is a challenging task in CMS based hybrid pepper breeding programs. In this study a DNA sequence possibly related to pungency trait with high similarity to Pun¹ or At³ gene was investigated. Nucleotide alignment of the obtained sequences and corresponding fragment from the data base has revealed a 16bp deletion in C.annuum ‘Maor’. A multiplex agarose based co-dominant marker was designed to detect the identified polymorphism and named it as Cen¹. This Cen¹ marker is validated in a panel of 27 pepper genotypes belonging to C.annuum, C.chinensis, C.frutescens and C.baccatum for its wide utility. All these Capsicum accessions were correctly discriminated with phenotype. In addition, the ability of Cen¹ marker to discriminate homozygous and heterozygous plants was demonstrated in F1 hybrids crossed from a non pungent ‘Maor’ and a pungent ‘Habanero’. The Cen¹ marker was also associated with phenotypic character in the tested genotypes. Moreover the linkage association of Cen¹ with At³ or Pun¹ gene has also been discussed. Therefore the developed functional marker in this study will be highly useful in marker assisted selection (MAS) programmes, germplasm characterization and seed purity testing of chilli.

Key words: Capsicum spp. Marker assisted selection, Pun¹, Capsaicinoids, Pungency, Allele.

Introduction

Pungency or heat is a unique trait of Capsicum genus and is thought evolved to deter mammalian herbivores there by promoting seed dispersal by birds (1). Pungency in peppers is due to the production of group of alkaloids called ‘capsaicinoids’ in placental tissues of developing fruits approximately twenty days post anthesis. After biosynthesis they are secreted towards the outer epidermal cells and finally accumulated in structures called ‘blisters’ located on the placental surface (2, 3). Capsaicinoids are synthesized by condensation of branched chain fatty acids and vanillylamine, derived from phenylalanine, (4). Although more than ten different capsaicinoids structures exist (5), ‘capsaicin’ is responsible for sensation of pungency, accounting for almost 90% of all capsaicinoids (6, 7). In non-pungent pepper fruits vanillyl alcohol will be formed instead of vanillylamine which upon condensing branched chain fatty acid moiety, forms ‘capsinoids’ the non pungent alkaloids facilitating their application in human medicine as pain relievers (8, 9, 10).

It has been known for almost a century ago that mutations at single genetic locus, Pun¹ (formerly known as C) is responsible for loss of pungency in sweet peppers (11, 12). Several studies with different Capsicum population could map Pun¹ locus to pepper chromosome 2.

Identification and Validation of an Allele Specific Marker Associated with Pungency
Recent studies by candidate gene approach concluded that Pun1 encodes for a 'putative acyltransferase AT3' that has a qualitative role in determining pungency (13). Later studies have identified another allelic series Pun2 in wild pepper C.chacoense and a quantitative role was attributed to it (14). Capsaicin biosynthesis is variable by environmental stress, fruit position and also by the height of the area (15, 16). Phenotyping of pungency trait is an important task and can be a bottleneck in some pepper breeding programs. To facilitate this process, several methods have been developed from organoleptic tests well known as Scoville Test (17) to analytical methods based on separation techniques as gas chromatography (GC) and high performance liquid chromatography (HPLC) coupled to detection techniques as ultraviolet (UV) or mass spectrometry (MS) (18). These methods have some advantages and/or disadvantages, and they share great requirements of time and labor.

Biased selection pressure for sweet pepper to be used as vegetable during domestication has resulted in large deletions of At3 or Pun1 gene. So far three different allelic mutations were observed in At3 or Pun1 gene (19). Among them most prominent and widely exploited one is pun1^1 which involves a 2.5 kb deletion spanning the putative promoter region extending through 5'UTR and first exon of coding region (20). The pun1^1 allele is specific to C. annuum derived cultivars and several markers were identified that co-segregated with this allele (21-24). Another recessive allele of Pun1 is pun1^2 identified in C.chinensis with 4bp deletion in the first exon of At3 gene associated phenotypically with absence of blisters in placental epidermal cells (3). A tightly linked marker for pun1^2 using florescent primer was developed by Wyatt et al., (19). The third allele pun1^3 was reported from C.frutescens with 210bp deletion including the stop codon (14).

In this paper, we report a new genetic source of allele that controls pungency. We designed a novel co-dominant functional marker for the identified null allele and attempted to associate with phenotype in Capsicum spp. The versatility of developed marker was demonstrated among the panel of pepper genotypes and also in F1 hybrids.

Material and Methods

For sequencing analysis of candidate gene At3 four different pepper accessions were selected based on the differential banding pattern observed in one of the selected plants while genotyping pungency trait using ARMS-PCR marker (25). The samples include the non-pungent C.annuum ‘Maor’, C.frutescens ‘Gril’ and pungent C.annum ‘SCM-334’, C.chinensis ‘Orange Habanero’. The developed marker was tested in a wide range (twenty seven) of pungent and non pungent pepper genotypes belonging to various species of Capsicum. The details of species and cultivar of each genotype is given in Table-1. The capsicum accessions studied were obtained from Vibha seeds Ltd, India and the seeds were selfed in the green house conditions between 20-25°C at Yogi Vemana University, Kadapa, A.P, India, using standard horticultural practices. The co-dominant nature of the marker was demonstrated on F1 hybrids obtained by a cross between C.annuum ‘Maor’ X C.chinensis ‘Orange Habanero’.

Organoleptic test was performed to score the pungency of genotypes under study. At least two persons tasted the matured fruits randomly from three plants per accession. A sample was declared non pungent when all samples tasted were non-pungent. If at least one among the tasted fruit is happened to be pungent then that accession was considered as pungent. However capsaicinoid content was also quantified using ELISA (enzyme linked immunosorbent assay) kit from Beacon Analytical (Portland, ME,USA) according to manufacturer’s protocol taking five mature dried fruits from three replicates per accession.

Genomic DNA from young leaf tissue was extracted as per the modified protocol of Doyle Chakradhar et al.
and Doyle (1990) with minor changes (26). The obtained PCR products were gel purified using QIAquick Gel Extraction Kit (Qiagen, USA) and cloned into pJET1.2 vector according to manufacturer’s protocol (Thermo scientific, USA). Sequencing of cloned fragments was done with MWG (Eurofins Genomic India Pvt Ltd). A contig was created with the overlapping PCR clones using Geneious v5.3 software (27).

Primers used in this study were designed using fastPCR (http://fastpcr.software.informer.com/).

To amplify the \(At3 \) gene, sequence information already submitted to gene bank was used to design gene specific primers (F.P 5’-CCATGGATTGTTGCTCGGGCCTCC-3’ and R.P 5’-CCGTACCGCCCCATTGCGATTCC-3’).

Using these primers \(At3 \) or \(Pun1 \) gene amplified from selected pepper accessions and sequenced in both direction using the same primers. A co-dominant marker designed specific to the newly identified genetic locus consists of three primers Cen1F.P (5’-CCATTAGTCGT TCATTTTTGTTTG-3’), Cen1 R.P_1(5’-TCTGCGCCCTTGGTTGGATTTTA-3’) and Cen1R.P_2 (3’-GCATGTGGTATCATGCATG-5’). The PCR analysis was carried out in 20\(\mu l \) reaction system consisting of 50-100ng of template DNA, 0.5\(\mu l \) of 20\(\mu M \) each primer, 1\(\mu l \) of 20mM dNTPs, 2\(\mu l \) of 10X PCR buffer and 1U of taq polymerase (NEB, USA). A 20mM TMAC (Tetramethyl ammonium chloride) was used for reaction used with \(Cen1 \) marker. PCR was performed in Bio-rad thermal cycler system1000 (Bio-rad, USA) for 35 cycles and conditions for \(At3 \) gene amplification include an initial denaturation of 4 min at 94°C, followed by 35 cycles of 94°C/1min, 58°C/1min, 72°C/2min with final extension of 5 min.

PCR cycles for \(Cen1 \) marker includes 94°C for 5 min, with 35 cycles of 94°C/1 min, 60°C / 1.30 min, 72°C/2min min and a final extension of 8 min at 72°C. The amplified products were resolved on 1.5% agarose gel (Lonzä,USA) with added ethedium bromide (50ng/\(\mu l \)) in electrophoresis system (Hoefer, Inc. USA) at 80volts containing 1X TAE buffer. The gels were visualized under UV light with an image analysis system GelDoc XR+ (Bio rad, USA).

Results and Discussion

We hypothesized that there would be a new source of allele that could be the source of genetic basis for loss of pungency in *Capsicum* spp. other than reported ones (19). To execute this, \(Pun1 \) or \(At3 \) was amplified from three *C.annuum* genotypes and one *C.chinensis* using gene specific primers and analysed their sequences. \(Pun1 \) or \(At3 \) which encodes for acyltransferase-3 is the only locus that has qualitative role on pungency in domesticated peppers (28). By sequence analysis it come to know that we could amplify another gene ‘\(catf-2 \)’ which has high homology (87%) with \(At3 \) or \(Pun1 \) gene (29). It was known from literature that \(catf-2 \) also belongs to acyltransferase proteins and co-expressed in placental tissue of capsicum along with other gene involved in capsaicinoids biosynthesis (13). Hence we further analysed the obtained sequences by multiple alignment using clustaW program (Fig. 2) and a comparative study with other deposited pepper accessions of \(catf2 \) and \(At3 \) from GeneBank (# AB206920, # AY819027.1, # AY819031.1, # AY819030.1 and # EF104910.1) was also done. Alignment of the consensus sequences of different genotypes revealed several SNPs and indels. A 16bp deletion was found in *C.annuum ‘Maor’* a non-pungent type between 2,644bp-2,659bp (Fig. 2). Multiple alignment of deduced amino acid sequence of the obtained sequence with other acyltransferases showed highly conserved motif (LVSYYPYAG), characteristic of genes belonging to BAHD super family of acyltrasferases (data not shown) (30). A three primer PCR marker was developed based on identified polymorphism and named it as \(Cen1 \). While designing the primers a second reverse primer was designed to complement the deleted region so that a 166bp & 494bp bands were observed only in pungent types and 478bp was observed in non pungent types (Fig. 1a & b). The \(Cen1 \) marker was validated in accessions used for sequencing and also tested on panel of 27 genotypes of pepper.
belonging to \textit{annum-chinensis-frutesense} complex of \textit{Capsicum} to reliably differentiate \textit{C.annuum}, 4 in \textit{C.chinensis}, 3 of 4 in \textit{C.frutescens}, 2 in \textit{C.baccatum} and the single pungent and non pungent types (Table 1).

During phenotyping by taste, 9 among 16 \textit{C.annuum}, 4 in \textit{C.chinensis}, 3 of 4 in \textit{C.frutescens}, 2 in \textit{C.baccatum} and the single

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Multiple sequence alignment of four selected genotypes: \textit{C. annuum} ‘Maor’, \textit{C. annuum} ‘SCM334’ \textit{C.chinensis} ‘Orange Hebenero’ and \textit{C.frutescens} ‘Griff9185’. The part dotted denote the deletion portion.}
\end{figure}

Chakradhar \textit{et al}
genotype of *C. pubescens* turned out to be pungent both in organoleptic as well ELISA based tests. During organoleptic test heat sensation was observed in pungent accessions 10 days after pollination (DAP) and found decreased gradually 20 days after DAP, indicating strict development regulation of genes involved in capsaicinoid biosynthesis. A further study is required to identify the gene that play qualitative role in pungency. *Pun1* ARMS-PCR marker identified previously by Garcer-Claver was used to screen the same genotypes to know the accuracy of the markers in predicting the phenotype (25). Few of the accessions which assessed as pungent by both organoleptic and HPLC were genotyped as non pungent with ARMS-PCR marker (data not shown) where as the Cen1 marker developed in this study revealed perfect association with the phenotype with two exceptions, one in *C. frutescens* and another in *C. baccatum ‘C-238’.* The result implies that the deletion may be unique to *C. annuum* spp occurred as result of duplication in a recent evolutionary event. Domestication of *Capsicum*

Table 1. Capsicum spp. Genotypes and their respective phenotyping for pungency obtained with Cen1 marker

<table>
<thead>
<tr>
<th>S.No</th>
<th>Samples of germplasam and F1 hybrids of C. annuum ‘Maor’ X C. chinensis ‘Habanero’</th>
<th>Phenotype</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C. annuum var. annuum cv.’Aleppo’</td>
<td>Non pungent</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>C. annuum var. annuum cv.’New Mexico’</td>
<td>Non pungent</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C. annuum var. annuum cv. ‘Jalapeno’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>C. annuum var. annuum cv. ‘Bell’</td>
<td>Non pungent</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Capsicum annuum var. glabriusculum</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>C. annuum cv. ‘Asain’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>C. annuum cv. ‘Paprika’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>C. annuum cv. ‘CH-19’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>C. annuum cv. ‘Maor’</td>
<td>Non pungent</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>C. annuum cv. ‘SCM334’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>C. annuum cv. ‘Yolo Wonder’</td>
<td>Non pungent</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>C. annuum cv. ‘Cal wonder orange’</td>
<td>Non pungent</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>C. annuum cv. ‘Bukesh’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>C. annuum cv. ‘Agridulce’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>C. annuum cv. ‘Aviculare’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>C. annuum cv. ‘czech Black’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>C. pubescens cv. ‘Manzano’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>18</td>
<td>C. frutescens cv. ‘Wild’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>19</td>
<td>C. frutescens cv. ‘BG 2816’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>C. frutescens cv. ‘Grif 9182’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>C. frutescens cv. ‘PI 355819’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>22</td>
<td>C. chinense cv. ‘Orange Habanero’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>C. chinense cv. ‘Red Savina’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>24</td>
<td>C. chinense cv. ‘NMCA30036’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>25</td>
<td>C. chinense cv. ‘Bhut Jolokia’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td>C. baccatum var pendulum cv. ‘C-238’</td>
<td>Pungent</td>
<td>A</td>
</tr>
<tr>
<td>27</td>
<td>C. baccatum cv. ‘Aji’</td>
<td>Pungent</td>
<td>A</td>
</tr>
</tbody>
</table>
species happened independently early during evolution and hence each taxa appear to carry different mutations for non-pungency (16, 31). The reason for not detecting the trait in *C.frutescens* and in *C.baccatum* could be because of existence of different source of alleles that could be responsible for loss of pungency (14). The *Cen1* marker developed in this study was also used to demonstrate zygosity status of the allele i.e. to distinguish between homozygous and heterozygous plants. The results using the parental lines, 'Moar' and 'Habanero' and their corresponding pungent F₁ hybrids revealed the presence of three fragments in F₁ heterozygous plants with amplicons of pungent allele specific 500 & 166 bp and non-pungent allele specific 484bp. (Fig.1 c). All F₁ hybrids exhibited a pungent phenotype indicating the dominant nature of the allele.

Conclusions
Identification of pungent and non pungent genotypes at the seedling stage much earlier than fruit setting is a challenge in pepper breeding programs. This study provides a new allele specific versatile marker (*Cen1*) for the identification of the pungent trait in capiscum. The results, after assessing a large number of capsicum genotypes, have clearly demonstrated the feasibility of this allele specific deletion based co-dominant marker in breeding applications like germplasam screening, genetic purity test and marker assisted back crossing.

References
analogs (capsinoids) found in non-pungent chilli pepper (CH-19 Sweet) fruits. Biosci Biotechnol Biochem, 74:274–278.
27. Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field,

